Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry Name ______________ Date _______________ Section____________ Definition: Two triangles are congruent iff there exists a correspondence such that all three pairs of sides and all three pairs of angles are congruent. Postulate shortcuts: ASA, SSS, SAS, AAS If the triangles are proven congruent using a postulate, then the remaining parts can be stated as congruent using the definition as a reason. In other words: Corresponding Parts of Congruent Triangles are Congruent. I. Can the two triangles be proved congruent? If so, name the method used. If not write none. 1. _______________ 2. _______________ 3. _______________ 4. _______________ 5. _______________ 6. _______________ 7. _______________ 8. _______________ 9. _______________ E __________ 10. EX bisects ∠TEM, TE ≅ EM T M __________ 11. TE⊥ XT, ME⊥ XM , ∠TEX ≅ ∠MEX __________ 12. TE ≅ EM , TX ≅ XM __________ 13. TX ≅ XM , EX bisects ∠TEM __________ 14. EX bisects ∠TXM, ∠T ≅ ∠M -1- X A __________ 15. M is the midpoint of JE , ∠A ≅ ∠I __________ 16. JA⊥ JE, EI⊥ JE , JM ≅ EM __________ 17. M is the midpoint of JE , AJ ≅ IE __________ 18. JA⊥ JE, EI⊥ JE , ∠A ≅ ∠I J M E __________ 19. JA⊥ JE, EI⊥ JE , M is the midpoint of JE 20. Let’s try a proof! Given: FJ bisects ∡HFG ; ∡H ≅ ∡J , FJ ≅ FH Prove: ∡FIH ≅ ∡FGJ -2- I