Download Geometry Definition: Two triangles are congruent iff there exists a

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry
Name ______________
Date _______________
Section____________
Definition: Two triangles are congruent iff there exists a correspondence such that all three
pairs of sides and all three pairs of angles are congruent.
Postulate shortcuts: ASA, SSS, SAS, AAS
If the triangles are proven congruent using a postulate, then the remaining parts can be stated
as congruent using the definition as a reason.
In other words: Corresponding Parts of Congruent Triangles are Congruent.
I. Can the two triangles be proved congruent? If so, name the method used. If not write none.
1. _______________
2. _______________
3. _______________
4. _______________
5. _______________
6. _______________
7. _______________
8. _______________
9. _______________
E
__________ 10. EX bisects ∠TEM, TE ≅ EM
T
M
__________ 11. TE⊥ XT, ME⊥ XM , ∠TEX ≅ ∠MEX
__________ 12. TE ≅ EM , TX ≅ XM
__________ 13. TX ≅ XM , EX bisects ∠TEM
__________ 14. EX bisects ∠TXM, ∠T ≅ ∠M
-1-
X
A
__________ 15. M is the midpoint of JE , ∠A ≅ ∠I
__________ 16. JA⊥ JE, EI⊥ JE , JM ≅ EM
__________ 17. M is the midpoint of JE , AJ ≅ IE
__________ 18. JA⊥ JE, EI⊥ JE , ∠A ≅ ∠I
J
M
E
__________ 19. JA⊥ JE, EI⊥ JE , M is the midpoint of JE
20. Let’s try a proof!
Given: FJ bisects ∡HFG ; ∡H ≅ ∡J , FJ ≅ FH
Prove: ∡FIH ≅ ∡FGJ
-2-
I
Related documents