Download Magnetic Dipole Field

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fundamentals of Magnetism
Albrecht Jander
Oregon State University
Part I: H, M, B, Ο‡, µ
Part II: M(H)
Magnetic Field from Current in a Wire
H
dl
I
c
dl
Ampere’s Circuital Law:
c
André-Marie Ampère
(1775–1836)
r
R
Biot-Savart Law:
οΏ½ 𝐻 βˆ™ 𝑑𝑙⃗ = 𝐼
𝑑𝐻 =
c
𝐻=
𝐼
[A/m]
2πœ‹πœ‹
𝐼𝐼𝑙⃗ × π‘…οΏ½
4πœ‹ 𝑅
2
Jean-Baptiste Biot
(1774 –1862)
Félix Savart
(1791 – 1841)
Magnetic Field from Current Loop
H
r
I
Use Biot-Savart Law:
𝑑𝐻 =
𝐼𝐼𝑙⃗ × π‘…οΏ½
4πœ‹ 𝑅
2
In the center:
𝐻=
𝐼
[A/m]
2π‘Ÿ
Magnetic Field in a Long Solenoid
H
I
JS
I
N turns
L
Inside, field is uniform with:
𝐻=
𝑁𝑁
[A/m]
𝐿
𝐻 = 𝐽𝑆
[A/m]
Magnetic Field from β€œSmall” Loop (Dipole)
H
r
I
Magnetic Field from Small Loop (Dipole)
H
R
ΞΈ
Compare to
Electric dipole:
For R >> r
𝐼𝐼
οΏ½ sin(πœƒ)
𝐻=
2𝒓� cos πœƒ + 𝜽
3
4πœ‹π‘…
Magnetic (dipole) moment:
π‘š = 𝐼𝐴⃗
[Am2]
[A/m]
Magnetic Field of a Dipole
H
R
ΞΈ
π‘žπ‘š
For R >> r
π‘žπ‘š 𝑑
𝐻=
2π‘ŸΜ‚ cos πœƒ + πœƒοΏ½sin(πœƒ)
3
4πœ‹π‘…
Magnetic (dipole) moment:
π‘š = π‘žπ‘š 𝑑⃗
[A/m]
[Am2]
[A·m]
Magnetic Poles and Dipoles
Electric charge
Magnetic charge, or β€œpole”
+ qm
+ q
π‘ž
𝐷=
4πœ‹π‘…2
Magnetic field from a magnetic β€œmonopole”
π‘žπ‘š
𝐻=
4πœ‹π‘…2
[A/m]
π‘žπ‘š
[A·m]
Magnetic Field of a Dipole
+ qm
d
ΜΆ qm
π‘žπ‘š
[A·m]
Magnetic Field of a Dipole
H
R
ΞΈ
π‘žπ‘š
For R >> r
π‘žπ‘š 𝑑
𝐻=
2π‘ŸΜ‚ cos πœƒ + πœƒοΏ½sin(πœƒ)
3
4πœ‹π‘…
Magnetic (dipole) moment:
π‘š = π‘žπ‘š 𝑑⃗
[A/m]
[Am2]
[A·m]
Orbital Magnetic Moment
e-
β€’Electrons orbiting a nucleus are
like a circulating current producing
a magnetic field.
β€’For an electron with charge qe orbiting at a radius R with
frequency f, the Orbital Magnetic Moment is
m = IA = βˆ’qe f Ο€R 2
β€’ It also has an Orbital Angular Momentum
L = me vR = me 2Ο€Rf R
β€’ Note:
m βˆ’ qe
=
= gyromagnetic ratio
L 2me
[Am2]
Orbital Moment is Quantized
Bohr model of the atom
Ξ»dB
R
β€’DeBroglie wavelength is:
e-
Ξ»dB =
h
me v
β€’Bohr Model: orbit must be integer number of wavelengths
2Ο€R = NΞ»dB = N
h
h
=N
me v
me 2Ο€Rf
β€’ Thus the orbital magnetic moment is quantized:
m = βˆ’ qe f Ο€R 2 = N
q
h qe
=N e
2Ο€ 2me
2me
β€’ Magnetic moment restricted to multiples of
Bohr Magneton
q e
µB =
= 9.2742 ×10 βˆ’ 24 [ Am 2 ]
2me
Louis de Broglie
(1892-1987)
Spin
β€’ Spin is a property of subatomic particles
(just like charge or mass.)
β€’ A particle with spin has a magnetic dipole
moment and angular momentum.
β€’ Spin may be thought of conceptually as
arising from a spinning sphere of charge.
(However, note that neutrons also have spin
but no charge!)
Pauli and Bohr contemplate
the β€œspin” of a tippy-top
Electron Spin
β€’ When measured in a particular direction, the
measured angular momentum of an electron is
Lz = ±

2
β€’ When measured in a particular direction, the measured magnetic
moment of an electron is
q
mz = s z e = ± µ B
me
β€’ We say β€œspin up” and β€œspin down”
β€’ Note:
m βˆ’ qe
=
L
me
Compare:
Spin
Orbital
mz = ± µ B
m z = Nµ B
m βˆ’ qe
=
L
me
m βˆ’ qe
=
L 2me
g=2
βˆ’ qe
m
=g
L
2me
g =1
Stern-Gerlach Experiment - 1922
Demonstrated that magnetic moment
is quantized with ±µB
Otto Stern (1888-1969)
Walther Gerlach, Otto Stern (1922). "Das magnetische Moment des
Silberatoms". Zeitschrift für Physik A Hadrons and Nuclei 9.
Walter Gerlach
(1889-1979)
Stern-Gerlach Experiment
Quantum Numbers of Electron Orbitals
β€’Electrons bound to a nucleus move in orbits identified by quantum numbers
(from solution of Schrödinger's equation):
n
l
ml
ms
1…
principal quantum number, identifies the β€œshell”
0..n-1
angular momentum q. #, type of orbital, e.g. s,p,d,f
-l..l
magnetic quantum number
+½ or -½ spin quantum number
For example, the electron orbiting the
hydrogen nucleus (in the ground state) has:
n=1, l=0, ml=0, ms=+½
In spectroscopic notation: 1s1
Spectroscopic notation
l=0
s
l=1 p
l=2
d
l=3
f
n
l
1s22s2
# of electrons
in orbital
Spin and Orbital Magnetic Moment
β€’ Total orbital magnetic moment (sum over all electron orbitals)
mtot _ orbital = µ B βˆ‘ ml
β€’ Total spin magnetic moment
mtot _ spin = 2 µ B βˆ‘ ms
full orbitals: no net moment
E.g. Iron:
1s22s22p63s23p63d64s2
How to fill remaining d orbitals (l=2) 6 electrons for 10 spots:
ms=+½
ml=-2
ml=-1
ml=0
ml=+1
ml=+2





οƒͺ
ms=-½
mtot _ orbital = 2 µ B
mtot _ spin = 4 µ B
Hund’s rules:
Maximize Ξ£ms
Then maximize Ξ£ml
Magnetization, M
Atomic magnetic moment:
π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
What is H here?
[Am2]
M
Object magnetic moment:
π‘šπ‘œπ‘œπ‘œ. = βˆ‘π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
Atomic density:
𝑁
𝑑=
𝑣𝑣𝑣
[1/m3]
[Am2]
Magnetic moment per unit volume:
π‘šπ‘œπ‘œπ‘œ.
𝑀≝
= π‘šπ‘Žπ‘Žπ‘Žπ‘Ž 𝑑
𝑣𝑣𝑣
[A/m]
Equivalent Loop Currents
𝐼
Atomic magnetic moment:
π‘šπ‘Žπ‘Žπ‘Žπ‘Ž = I𝐴⃗
What is H here?
M
[Am2]
Object magnetic moment:
π‘šπ‘œπ‘œπ‘œ. = βˆ‘π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
Atomic density:
𝑁
𝑑=
𝑣𝑣𝑣
[1/m3]
[Am2]
Magnetic moment per unit volume:
π‘šπ‘œπ‘œπ‘œ.
𝑀≝
= π‘šπ‘Žπ‘Žπ‘Žπ‘Ž 𝑑
𝑣𝑣𝑣
[A/m]
Equivalent Surface Current
𝐼
Atomic magnetic moment:
π‘šπ‘Žπ‘Žπ‘Žπ‘Ž = I𝐴⃗
M
[Am2]
𝑛�
JS
Object magnetic moment:
π‘šπ‘œπ‘œπ‘œ. = βˆ‘π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
Atomic density:
𝑁
𝑑=
𝑣𝑣𝑣
[1/m3]
What is H here?
[A/m]
[Am2]
Equivalent surface current:
𝐽⃗𝑆 = 𝑀 × π‘›οΏ½
[A/m]
Magnetic Pole Model
Atomic magnetic moment:
π‘šπ‘Žπ‘Žπ‘Žπ‘Ž = π‘žπ‘š 𝑑⃗
What is H here?
M
[Am2]
Object magnetic moment:
π‘šπ‘œπ‘œπ‘œ. = βˆ‘π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
Atomic density:
𝑁
𝑑=
𝑣𝑣𝑣
[1/m3]
[Am2]
Magnetic moment per unit volume:
π‘š
𝑀≝
𝑣𝑣𝑣
[A/m]
Equivalent Surface Pole Density
Surface charge density:
πœŒπ‘šπ‘š
Atomic magnetic moment:
π‘šπ‘Žπ‘Žπ‘Žπ‘Ž = π‘žπ‘š 𝑑⃗
M
[Am2]
π‘žπ‘š
=
π‘Žπ‘Žπ‘Žπ‘Ž
Object magnetic moment:
π‘šπ‘œπ‘œπ‘œ. = βˆ‘π‘šπ‘Žπ‘Žπ‘Žπ‘Ž
Atomic density:
𝑁
𝑑=
𝑣𝑣𝑣
[1/m3]
[Am2]
Magnetic pole density:
πœŒπ‘šπ‘š = 𝑀 βˆ™ 𝑛�
[A/m]
[Am]
[m2]
Example: NdFeB Cylinder
3 cm
A
2 cm
M =106
M
[A/m]
vol ≃ 14·10-6
m = 14
JS
[Am2]
JS =106
[m3]
[A/m]
I = 20000
A ≃ 7·10-4
[A]
[m2]
m = IA = 14
[Am2]
Example: NdFeB Cylinder
3 cm
ρms
+ ++
+
+ ++ ++++
+
+
2 cm
M =106
M
vol ≃ 14·10-6
m = 14
ρms =106
[A/m]
[Am2]
[m3]
[A/m]
A ≃ 7·10-4
qm = 700
[m2]
[Am]
d =2·10-2 [m]
m = qmd = 14
[Am2]
Example: NdFeB Cylinder
+ ++
+
+ ++ ++++
+ +
M
Result is the same external to magnetic material.
Hint: we are β€œfar” away from the dipoles!!!
Example: NdFeB Cylinder
+ ++
+
+ ++ ++++
+ +
M
Result is different inside the magnetic material.
The Constitutive Relation
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
B = Magnetic flux density
[ Tesla ]
H = Magnetic field, β€œMagnetizing force”
M = Magnetization
[A/m]
[A/m]
µ0 = Magnetic constant, β€œPermeability of free space” [Tesla-m/A] [Henry/m] [N/A2]
Note, in vacuum, M is zero:
𝑩 = 𝝁𝟎 𝑯
What is µo ?
µ0 comes from the SI definition of the Ampere:
The ampere is that constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular cross section,
and placed 1 meter apart in vacuum, would produce between these
conductors a force equal to 2×10βˆ’7 newton per meter of length.
I1
I2
F
B
𝝁𝟎 π‘°πŸ
𝑩 = 𝝁𝟎 𝑯 =
πŸπ…π…
𝑭 = π‘°πŸ 𝑳 × π‘©
Maxwell’s Equations (Magnetostatics)
Differential form
π›βˆ™π‘©=𝟎
With:
𝛁 × π‘― = 𝑱⃗
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
𝛁 βˆ™ 𝑩 = 𝝁𝟎 (𝛁 βˆ™ 𝑯 + 𝛁 βˆ™ 𝑴)
Integral form
οΏ½ 𝑩 βˆ™ 𝒅𝒔 = 𝟎
οΏ½ 𝑯 βˆ™ 𝒅𝒍⃗ = 𝑰
𝛁 βˆ™ 𝑯 = βˆ’π› βˆ™ 𝑴 = π†π’Ž
[A/m2]
Magnetic charge density
i.e. magnetic charge/volume
Example: NdFeB Cylinder
+ ++
+
+ ++ ++++
+ +
M
B
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
H
Boundary Conditions
B1β”΄
B2β”΄
The perpendicular component of B
is continuous across a boundary
H1||
H2||
The transverse component of H is
continuous across a boundary
(unless there is a true current on
the boundary)
Demagnetizing Fields
+ ++
+
+ ++ ++++
+
+
M
Hd
𝑯𝒅 ∝ 𝑴
𝑯𝒅 = βˆ’π‘΅π‘΅
Demagnetizing Factor
Demagnetizing Factors: Special Cases
𝑯𝒅 = βˆ’π‘΅π‘΅
𝑡𝒙 + π‘΅π’š + 𝑡𝒛 = 𝟏
Sphere
Thin Sheet
Long Rod
𝟏
𝑡𝒙 = π‘΅π’š = 𝑡𝒛 =
πŸ‘
z
x
y
𝟏
𝑡𝒙 = π‘΅π’š =
𝟐
𝑡𝒛 = 𝟎
𝑡𝒙 = π‘΅π’š = 𝟎
𝑡𝒛 = 𝟏
Demagnetizing Factors
β€œDemag” fields in ellipsoids of revolution are uniform.
𝑯𝒅 = βˆ’π‘΅π‘΅
𝑡𝒙 + π‘΅π’š + 𝑡𝒛 = 𝟏
Example: Ba-Ferrite Sphere
Barrium Ferrite:
𝑴~𝟏𝟏𝟏
M
[kA/m]
B
H
𝟏
𝑡𝒙 = π‘΅π’š = 𝑡𝒛 =
πŸ‘
𝑯𝒅 = βˆ’π‘΅π‘΅
𝑯𝒅 = βˆ’πŸ“πŸ“
[kA/m]
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
𝑩 = 𝝁𝟎 (𝟏𝟏𝟏 [kA/m] )
𝑩 = 𝟎. 𝟏𝟏𝟏
[Tesla]
Example: Ba-Ferrite Ellipsoid
Barrium Ferrite:
𝑴~𝟏𝟏𝟏
M
[kA/m]
B
H
𝑡𝒙 = π‘΅π’š = 𝟎. πŸ’πŸ’
𝑯𝒅 = βˆ’π‘΅π‘΅
𝑯𝒅 = βˆ’πŸ”πŸ”. πŸ“
[kA/m]
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
𝑩 = 𝝁𝟎 (πŸ–πŸ–. πŸ“ [kA/m] )
𝑩 = 𝟎. 𝟏𝟏𝟏
[Tesla]
Example: Ba-Ferrite Ellipsoid
Barrium Ferrite:
𝑴~𝟏𝟏𝟏
M
[kA/m]
B
H
𝑡𝒛 = 𝟎. 𝟏
𝑯𝒅 = βˆ’π‘΅π‘΅
𝑯𝒅 = βˆ’πŸπŸ
𝑩 = 𝝁𝟎 (𝑯 + 𝑴)
[kA/m]
𝑩 = 𝝁𝟎 (𝟏𝟏𝟏
𝑩 = 𝟎. 𝟏𝟏
[kA/m] )
[Tesla]
Susceptibility and Permeability
Ideal, linear soft magnetic material
Ideal permanent magnet
M
M
H
H
Real, useful magnetic material
M
𝑴 = 𝝌𝝌
Susceptibility [unitless]
𝑩 = 𝝁𝟎 (𝑯 + πŒπ‘―)
H
𝑩 = 𝝁𝟎 (𝟏 + 𝝌)𝑯
𝑩 = 𝝁𝟎 𝝁𝒓 𝑯
Rel. Permeability
[unitless]
Example, Long Rod in a Long Solenoid
I =1 A
N/L = 1000/m
πœ‡π‘Ÿ = 1000
πœ’ = 999
𝑁𝑁
= 1 [kA/m]
𝐿
𝑁𝑁
= πœ’πœ’ = πœ’ = 999 [kA/m]
𝐿
𝐻=
𝑀
or:
𝐡 = πœ‡0 𝐻 + 𝑀 = πœ‡0 (1000kA/m)= 1.25 [Tesla]
𝐡 = πœ‡0 πœ‡π‘Ÿ 𝐻= 1.25 [Tesla]
Note: without the rod:
𝐡 = πœ‡0 𝐻= 0.00125
[Tesla]
Example, Soft Magnetic Ball in a Field
Hext
M
B
Hd
𝑴 = 𝝌𝝌 = 𝝌 𝑯𝒆𝒆𝒆 + 𝑯𝒅 = 𝝌 𝑯𝒆𝒆𝒆 βˆ’ 𝑡𝑡
𝝌
𝑴=
𝑯𝒆𝒆𝒆
𝟏 + π‘΅πŒ
πŒπ’†π’†π’†
𝝌
=
< πŸ‘β€Ό!
𝟏 + π‘΅πŒ
Example, Soft Magnetic Ball in a Field
𝑴 = 𝝌𝝌 = 𝝌 𝑯𝒆𝒆𝒆 + 𝑯𝒅 = 𝝌 𝑯𝒆𝒆𝒆 βˆ’ 𝑡𝑡
𝝌
𝑴=
𝑯𝒆𝒆𝒆
𝟏 + π‘΅πŒ
πŒπ’†π’†π’†
𝝌
=
< πŸ‘β€Ό!
𝟏 + π‘΅πŒ
B
Example, Thin Film in a Field
Hext
𝑴 = πŒπ‘―π’Šπ’Šπ’Šπ’Šπ’Šπ’Š = 𝝌 𝑯𝒆𝒆𝒆 + 𝑯𝒅 = 𝝌 𝑯𝒆𝒆𝒆 βˆ’ 𝑴
𝝌
𝑴=
𝑯𝒆𝒆𝒆
𝟏+𝝌
π‘―π’Šπ’Šπ’Šπ’Šπ’Šπ’Š
𝟏
=
𝑯𝒆𝒆𝒆
𝟏+𝝌
π‘©π’Šπ’Šπ’Šπ’Šπ’Šπ’Š = 𝐡𝒆𝒆𝒆
Why?
Torque and Zeeman Energy
F
+ ++
+
+ ++ ++++
+ +
M
F
Force:
B
𝐹⃗ = π‘žπ‘š 𝐡
Torque:
𝒯 =π‘š×𝐡
Energy:
𝐸 = βˆ’π‘š βˆ™ 𝐡
Self Energy and Shape Anisotropy
𝐸=
1
2 οΏ½ πœ‡0 𝑀
π‘£π‘œπ‘œ
βˆ™ 𝐻𝑑𝑑
M
Hd
Hd M
Higher energy
Lower energy
β€œShape Anisotropy”
Hard
0
Hard
Easy
180
ΞΈ
360
M
Hard axis
E
Easy
2
𝐸 = 12πœ‡0 𝑀𝑠 𝑁π‘₯ βˆ’ π‘π‘Œ 𝑠𝑠𝑠2 (πœƒ)
Easy axis
Magnetic Circuits
path length, l
οΏ½ 𝑯 βˆ™ 𝒅𝒍⃗ = 𝑡𝑡
I
area,A
N turns
Assuming flux is uniform and contained
inside permeable material:
𝑡𝑡 = 𝝓𝝓
Magneto-motive force, β€œMMF”
Flux
𝝓
𝑩 = 𝝁𝟎 𝝁𝒓 𝑯 =
𝑨
Reluctance,
𝒍
𝓑=
𝝁𝝁
Magnetic Circuits
π“‘πŸ
π“‘πŸ‘
π“‘πŸ
NI
π“‘π’ˆπ’ˆπ’ˆ
π“‘πŸ’
π“‘πŸ“
Solve using electric circuit theory.
π“π’ˆπ’ˆπ’ˆ
Units Confusion
CGS Units
SI Units
B
[Gauss]
B
: [Tesla]
H
[Oersted]
H
: [A/m]
M
[emu/cc]
M
: [A/m]
4Ο€M [Gauss]
𝑩 = 𝑯 + πŸ’π…π…
𝑩 βˆ™ 𝑯 [dyne/cm3]
𝑡𝒙 + π‘΅π’š + 𝑡𝒛 = πŸ’π…
𝑩 = 𝝁𝟎 𝑯 + 𝑴
𝑩 βˆ™ 𝑯 [J/m3]
𝑡𝒙 + π‘΅π’š + 𝑡𝒛 = 𝟏
Books on Magnetism
B.D. Cullity, Introduction to Magnetic Materials, Wiley-IEEE
Press, 2010. (revised version with C.D. Graham).
M. Coey, Magnetism and Magnetic Materials, Cambridge
University Press, 2010.
S. Chikazumi, Physics of Magnetism, John Wiley and Sons,
1984.
R.C. O’Handley, Modern Magnetic Materials, John Wiley & Sons,
2000.
R.L. Comstock, Introduction to Magnetism and Magnetic
Recording, John Wiley & Sons, 1999.
D. Jiles, Introduction to Magnetism and Magnetic Materials, CRC
Press, 1998.
Bozorth, Ferromagnetism,1951 (reprinted by IEEE Press, 1993.)
Related documents