Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Spherical Coordinates Review Schroedinger's equation: 2 2 ∂Ψ( r ,t) − ∇ Ψ( r ,t) + V ( r )Ψ( r ,t) = i 2m ∂t Space Time 2M ∇ ψ + 2 E − V (r ) ψ = 0 2 ( ) T= E −i t Ae Assume spherical symmetry: ⎡1 ∂ ⎛ 2 ∂⎞ 1 ∂ ⎛ ∂⎞ 1 ∂2 ⎤ r + 2 sin θ ⎟ + 2 2 ψ + k 2 (r)ψ = 0 ⎢ 2 2 ⎥ ⎜ ⎟ ⎜ ∂θ ⎠ r sin θ ∂φ ⎦ ⎣ r ∂r ⎝ ∂r ⎠ r sin θ ∂θ ⎝ k 2 (r) = 2M E − V (r) 2 ( ) Separation of variables. For spherical symmetry, the solution is separable in spherical coordinates: ( ) () () () ψ r,θ , φ = R r P θ F φ ⎡1 ∂⎛ 2 ∂⎞ ⎤ 1 ∂ ⎛ ∂⎞ 1 ∂2 2 r + 2 sin θ ⎟ + 2 2 + k (r) ⎥ R r P(θ )F(φ ) = 0 ⎢ 2 ⎜ ⎟ ⎜ 2 ∂r ∂r ∂ θ ∂ θ ⎝ ⎠ ⎝ ⎠ r sin θ r sin θ ∂φ ⎣r ⎦ () Equations. Boundary conditions. ∂ ⎛ 2 ∂R ⎞ 2 2 r + r k (r) − l(l + 1) R = 0 ∂r ⎜⎝ ∂r ⎟⎠ ( ) l = 0, 1, 2 i i i 1 ∂ ⎛ ∂P ⎞ m2 sin θ ⎟ − 2 P + l(l + 1)P = 0 ⎜ sin θ ∂θ ⎝ ∂θ ⎠ sin θ ∂2 F 2 + m F =0 2 ∂φ m = 0, ±1, ±2 i i i ± l − 1 imφ ψ (r, θ , φ ) = ∑ Rl (r)Plm (cos θ )e lm = ∑ Rl (r)Ylm (θ , φ ) lm l m Ylm 0 0 Y00 = (1 / 4π ) 1 0 Y10 = ( 3 / 4π ) 1 ±1 2 0 2 ±1 Y2±1 = (15 / 16π ) 2 ±2 Y2±2 = (15 / 32π ) ⎧⎪ l=0,1,2... ⎨ ⎪⎩ m=0,±1,±2...±l 1/2 1/2 cos θ Y1±1 = ( 3 / 8π ) sin θ e±iφ 1/2 Y20 = ( 5 / 16π ) 1/2 ( 3cos θ − 1) 2 1/2 1/2 sin θ cos θ e±iφ sin 2 θ e±i2φ This will also hold in general for any quantum mechanical problem where the potential is spherical symmetry, so long as the potential energy depends only on r, for example an atom. This is the reason why it is so important for atomic, nuclear and particle physics. Meaning of the quantum numbers l and m Orbital angular momentum: L = r × p. 2 L = l(l + 1) 2 z componant of orbital angular momentum: Lz = Lz Lz = m L = l ( l + 1) Ly Lx r × pz = m Meaning of the quantum numbers l and m Orbital angular momentum: L = r × p. 2 L = l(l + 1) 2 z componant of orbital angular momentum: Lz = Lz r × pz Lz = m L = l ( l + 1) Ly Lx = m Angular Probability Functions. s states: p states: d states: f states: 4 quantum numbers n : radial quantum number (energy) l : orbital angular momentum, l = 0 (s), l = 1( p), l = 2 (d), ml : "magnetic" ml ≤ l. eg. l = 1: ml = −1, 0, + 1 ms : "spin" ms ≤ s. eg. s = 1 / 2 : ms = −1 / 2 , + 1 / 2 l = 3 ( f ), l = 4 (g) • • • Solution for R(r) depends on exact form of V (r). Free particle: V (r) = 0 l ⎛ 1 d ⎞ ⎛ sin x ⎞ jl (x) = x l ⎜ − ⎝ x dx ⎟⎠ ⎜⎝ x ⎟⎠ where x ≡ kr. jl (x) are called spherical Bessel functions. First few Spherical Bessel Functions. ( ) j0 kr = ( ) sin kr kr cos ( kr ) ( ) j ( kr ) = − kr ( kr ) sin kr 1 2 ( ) j2 kr = ( ) − 3cos ( kr ) − sin ( kr ) kr ( kr ) ( kr ) 3sin kr 3 2 For bound system, boundry connditions put constraints on k → kn . Rl (kr) → Rnl (kr) Homework. Due Friday, Nov. 6 Show that ψ 00 = R0Y00 and ψ 11 = R1Y11 are solutions to the Schroedinger equation. ⎡1 ∂⎛ 2 ∂⎞ 1 ∂ ⎛ ∂⎞ 1 ∂2 ⎤ 2 r + sin θ + ψ (r, θ , φ ) + k ψ (r,θ , φ ) = 0 ⎢ 2 ⎥ ⎜ ⎟ ⎜ ⎟ 2 2 2 2 ∂θ ⎠ r sin θ ∂φ ⎦ ⎣ r ∂r ⎝ ∂r ⎠ r sin θ ∂θ ⎝ Par5cle in a spherical box with rigid walls. Boundary Condition: R(r) → R(a) → 0 ( ) jnl kn a = 0 First few Spherical Bessel Functions. ( ) jn0 ka = ( ) sin ka k10 a = π ka ( ) − cos ( ka ) ( ) ka ( ka ) jn1 ka = ( ) jn 2 ka = sin ka 2 ( ) − 3cos ( ka ) − sin ( ka ) ka ( ka ) ( ka ) 3sin ka 3 2 k20 a = 2π k30 a = 3π k11 a=4.49 k21 a = 7.73 k31 a=10.90 k12 a=5.76 k22 a=9.10 k32 a=12.32 Zeros of Spherical Bessel Func5ons n 1 l 2 3 4 0 3.14 6.28 9.43 12.57 1 4.49 7.73 10.90 14.07 2 5.76 9.10 12.32 15.57 3 6.99 10.42 13.70 16.92 4 8.18 11.71 15.04 18.30 Applica5on to Nuclear Physics In the extreme nuclear shell model the nucleons are moving freely in a spherical nucleus with infinitely rigid walls at a radius a. Exercise: Calculate the energies of the three lowest quantum states, 1s, 1p,1d, 2s of a neutron moving in such a box of radius 5 fm. hc = 1240 eV-nm = 1240 × 10 −6 MeV-nm = 1240 MeV-fm 1240 c = MeV-fm =197.3 MeV-fm mM c 2 ≈ 939 MeV 2π 2 c 2 ( ka ) p2 2 k 2 2 c2 k 2 E= = = = 2m 2m 2mc 2 2mc 2 a 2 2 hc = 1240 eV-nm = 1240 × 10 −6 MeV-nm = 1240 MeV-fm 1240 c = MeV-fm =197.3 MeV-fm 2π k10 a = π k11a=4.493 k12 a=5.76 k20 a = 2π (197.3) MeV 2 -fm 2 2 c2 = = 0.8 MeV 2mc 2 a 2 2 ( 939 ) 5 2 MeV-fm 2 E10 = 0.8π 2 = 8 MeV ( E11 = 0.8 4.49 ( 2 E12 = 0.8 5.76 ( ) = 16 MeV 2 ) = 26 MeV ) E12 = 0.8 2 2 π 2 = 32 MeV 2 ( ) 32 MeV 26 MeV 16 MeV 8 MeV Shell structure of protons in a spherical box. 2s shell - 40Ca n = 2 l = 0 ml = 0 ms = ±1 / 2 1d shell - 36Ar n = 1 l = 2 ml = −2, − 1, 0, + 1, + 2 1p shell - 16O n = 1 l = 1 ml = +1 0 − 1 1s shell - 4He n = 1 l = 0 ml = 0 ms = ±1 / 2 ms = ±1 / 2 ms = ±1 / 2 Nucleons (protons and neutrons) obey the Pauli exclusion principle. Protons and neutrons fill shells seperately because they are not iden5cal par5cles.