Download Linear pulse propagation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Ultrafast Laser Physics
Ursula Keller / Lukas Gallmann
ETH Zurich, Physics Department, Switzerland
www.ulp.ethz.ch
Linear pulse propagation
Ultrafast Laser
Physics
ETH Zurich
Superposition of many monochromatic waves
U. Keller, ULP, Chap. 2, p. 1
Fourier Transformation
Plane wave, monochromatic
E(z,t) = E 0 e i ωt – kz
Inverse Fourier Transformation (for every position in space)
1 
+iω t
E
z,
E ( z,t ) = F −1 E ( z, ω ) =
ω
e
dω
(
)
2π ∫
{
E (t ) =
}
E (ω 1 ) +
E (ω 2 ) +
…
E (t ) =
1 
iω t
E
ω
e
dω
(
)
∫
2π
Fourier Transformation
E ( z, ω ) ≡ F { E ( z,t )} = ∫ E ( z,t ) e−iω t dt
U. Keller, ULP, Chap. 2, p. 3
Superposition of monochromatic waves
~
Spektrum A(Δω)
(a)
Frequenz Δω
Überlagerung der ebenen Wellen
Ebene Wellen
(b)
(c)
t
t
t
t
Light pulse
(d)
t
Wave packet
t
E (t ) =
1 
iω t
E
ω
e
dω
(
)
∫
2π
U. Keller, ULP, Chap. 2, p. 8-10
Monochromatic plane wave
E ( z, t ) = E0 ei(ω t−kn z )
Vacuum
Frequency:
Period:
Dispersive material
ν
ν
T =1 ν
Phase
velocity:
υp = c
Wave number: k = ω
c
2π
k=
λ
Wavelength:
λ
T =1 ν
υ p = cn = c n
ω ω
kn =
= n = kn
υp c
2π
kn =
= kn
λn
λ
λn =
n
U. Keller, ULP, Chap. 1
Optical Dispersion
U. Keller, ULP, Chap. 1
Helmholtz equation
E(z,t) = E 0 e i ωt – kz
Fourier Transformation
E ( z, ω ) ≡ F { E ( z,t )} = ∫ E ( z,t ) e−iω t dt
∂2
∂2
1 ∂2
E ( z,t ) − 2 2 E ( z,t ) = µ0 2 P ( z,t )
∂ z2
∂t
c ∂t
∂2
⇔ −ω 2
∂t 2
1 
E ( z, ω ) e+iω t dω
E ( z,t ) = F −1 E ( z, ω ) =
∫
2π
∂ 2 E ( z, ω ) ω 2 
2 
+
ω
=
−
µ
ω
E
z,
P ( z, ω )
(
)
0
∂ z2
c2
∂
∂t
2
2
∂
∂
⎛
⎞
ω 2 ⇔ − 2 = ⎜ −i ⎟
⎝ ∂t ⎠
∂t
P ( z, ω ) = χ (ω ) ε 0 E ( z, ω ) = ⎡⎣ε (ω ) − 1⎤⎦ ε 0 E ( z, ω )
{
}
ω ⇔ −i
∂3 ⎛ ∂ ⎞
ω ⇔ i 3 = ⎜ −i ⎟
⎝ ∂t ⎠
∂t
3
3
kn (ω ) =
ω
n (ω )
c
∂ 2 E ( z, ω )
2
E ( z, ω ) = 0
+
k
ω
(
)
⎡
⎤
n
⎣
⎦
2
∂z
E ( z, ω ) = E 0+ (ω ) e−ikn (ω ) z + E 0– (ω ) eikn (ω ) z
U. Keller, ULP, Chap. 2, p. 5
Analogy to the Schrödinger equation
Helmholtz equation:
Time independent Schrödinger equation:
Wave equation in the spectral domain
free particle
∂ E ( z, ω )
2
+
k
ω
⎡⎣ n ( ) ⎤⎦ E ( z, ω ) = 0
2
∂z
2
∂ 2ψ
2
+
k
ψ =0
2
∂x
particle in a potential field
∂ 2ψ 2m
2 +
2 E − E p ( x) ψ = 0

∂x
[
]
U. Keller, ULP, Chap. 2, p. 5
Dispersion for quantum mechanical particles
Photon in vacuum:
E = cp ⇔ ω ( k ) = ck
Photon in medium:
E = cn pn
Free electron:
p2
E=
2m
⇔ ω ( k ) = cn kn
2 2
⇔ ω (k) =
k
2m
υp =
υg =
Electron in conduction band:
ω k
=
k 2m
dω k p mυ klass
=
= =
= υ klass
dk
m
m m
E ( k ) ≈ E at − 2Es cos ka ⇔ ω ( k ) ≈ ω at − 2ω s cos ka
E
±kmax = ± π a
k
-kmax
Phonon in 1-dimensional lattice:
ω (k) = 2
υ g ( ±kmax ) = 0
kmax
β
⎛1
⎞
sin ⎜ k a ⎟
⎝2
⎠
M
U. Keller, ULP, Chap. 2, Appendix
Linear system theory
Ein ( t )
Input
System
h(t)
Output
impulse response h(t)
Ein ( t ) = δ ( t )
Eout ( t )
Eout ( t ) = ∫ h ( t ') Ein ( t − t ') dt ' ≡ h ( t ) ∗ Ein ( t )
Eout ( t ) = ∫ h ( t ')δ ( t − t ')dt ' = h ( t )
Examples of linear systems:
• pulse propagation in dispersive media
• photo detector (impulse response links photo current with light power or intensity)
• active light modulator in the linear regime
• image propagation through a lens systems
• stochastic processes such as amplitude and phase noise (linearized as a perturbation
on a much stronger signal)
U. Keller, ULP, Chap. 2, p. 6
Linear system theory
Ein ( t )
Input
System
h(t)
Output
impulse response h(t)
Input
Eout ( t ) = ∫ h ( t ') Ein ( t − t ') dt ' ≡ h ( t ) ∗ Ein ( t )
Eout ( t ) = ∫ h ( t ')δ ( t − t ')dt ' = h ( t )
Ein ( t ) = δ ( t )
E in (ω )
Eout ( t )
System
h (ω )
Output
E out (ω ) = h (ω ) E in (ω )
transfer function h (ω )
U. Keller, ULP, Chap. 2, p. 6
Linear system theory
Ein ( t )
Input
System
h(t)
Output
impulse response h(t)
Eout ( t ) = ∫ h ( t ') Ein ( t − t ') dt ' ≡ h ( t ) ∗ Ein ( t )
Eout ( t ) = ∫ h ( t ')δ ( t − t ')dt ' = h ( t )
Ein ( t ) = δ ( t )
E in (ω )
Eout ( t )
Input
System
h (ω )
Output
E out (ω ) = h (ω ) E in (ω )
transfer function h (ω )
spectral density:
2
Pin (ω ) = E in (ω )
Input
System
h (ω )
Output
2

S (ω ) ≡ h (ω )
2

Pout (ω ) = Eout (ω )
Pout (ω ) = S (ω ) Pin (ω )
U. Keller, ULP, Chap. 2, p. 6
Linear System – Example: dispersion
What is the impulse reponse or transfer function?
What is the pulse form during propagation?
How is the spectrum of the pulse changing ?
Solution:
Chapter 2, page 7
Zeit
b
us
re
A
Time
domain
Zeitraum
n
itu
g
sr
t
ich
u
ng
z
Intensität
Intensität
Dispersive pulse broadening
Freq
uenz
b
us
A
Spectral
domain
Spektralraum
Linear pulse broadening:
Transform-limited pulse is broadening in the time domain
but its spectrum remains unchanged.
re
n
ti u
g
ch
i
r
s
t
g
un
z
Light pulse
pulse envelope A(t)
electric field E(t)
E (t ) = A (t ) e
iω 0 t
U. Keller, ULP, Chap. 2, p. 10
Laser pulse
Pulse envelope A(t)
Electric Field E(t)
E (t ) =
E ( t ) = A ( t ) eiω 0t
1 
iω t
ω
e
dω
E
(
)
∫
2π
where A ( t ) =
1 
iΔω t
ω
e
dΔω
A
Δ
(
)
∫
2π
Laser pulse
Pulse envelope A(t)
Electric Field E(t)
E (t ) =
E ( t ) = A ( t ) eiω 0 t
1 
iω t
ω
e
dω
E
(
)
∫
2π
where A ( t ) =
1 
iΔω t
ω
e
dΔω
A
Δ
(
)
∫
2π
1 
1 iω 0 t 
i (ω 0 + Δω ) t
iΔω t
E
A
Δ
ω
+
Δ
ω
e
dΔ
ω
=
e
ω
e
dΔω
E (t ) =
(
)
(
)
0
∫
∫
2π
2π
~
E(ω)
Δω 0
0
ω0
ω
~
A(Δω)
0
Δω
A ( Δω ) = E (ω 0 + Δω )
U. Keller, ULP, Chap. 2, p. 8-11
Example: Gaussian pulse
Einhüllende
A(t)
pulse envelope
A(t)
t
E (t ) = e
− Γt 2
eiω 0 t
A (t ) = e
τp =
2 ln 2
Γ1
E(t)
electric field E(t)
− Γt 2
, Γ ≡ Γ1 − iΓ 2
dφtot ( t )
ω (t ) ≡
= ω 0 + 2Γ 2t
dt
U. Keller, ULP, Chap. 2, p. 12
Chirped Gaussian Pulse
(
)
E ( t ) = A ( t ) exp ( iω 0t ) = exp −Γt 2 exp ( iω 0t )
Γ ≡ Γ1 − iΓ 2
Γ2 = 0
Γ ≡ Γ1 − iΓ 2
Γ2 ≠ 0
φtot ( t ) ≡ ω 0t + Γ 2t 2
ω (t ) ≡
dφtot ( t )
= ω 0 + 2Γ 2t
dt
U. Keller, ULP, Chap. 2, p. 13
Time-Bandwidth Products
I (t )
τp τ
Δν p ⋅ τ p
2 ln2
0.4413
1.7627
0.3148
⎪⎧1, t ≤ τ 2
I (t ) = ⎨
⎪⎩ 0 , t > τ 2
1
0.8859
⎧⎪1 − x 2 , t ≤ τ 2
I (t ) = ⎨
⎩⎪ 0 , t > τ 2
1
0.7276
2
0.2206
ln2
0.1420
(x ≡ t τ )
1. Gaussian
I (t ) = e
− x2
2. Hyperbolic secant (soliton
pulse)
I (t ) = sech 2 x
3. Rectangle
4. Parabolic
5. Lorentzian
I (t ) =
1
1 + x2
6. Symmetric two-sided exponent
I (t ) = e−2 x
U. Keller, ULP, Chap. 2, p. 12
Spectral phase yielding shortest pulse
t : center of gravity
∞
t =
∫ t ⋅ I(t) dt
E (ω ) = E (ω ) exp ( iϕ (ω ))
−∞
∞
∫ I(t) dt
−∞
rms pulse duration Δt:
shortest pulse for:
2
Δt =
∂φ (ω )
=0
∂ω
(t − t
)
2
=
∞
∫ (t − t
−∞
)
2
I(t)dt
where φ (ω ) := ϕ (ω ) − ω t
U. Keller, ULP, Chap. 2, p. 15
Inappropriateness of FWHM definition
Temporal FWHM of pulse with nonlinear spectral phase is shorter than
“transform-limited” pulse
FWHM is the standard in the community – but one has to be aware of its
limitations
Optical Dispersion
Positive dispersion:
∂2 n
>0
2
∂ω
Negative dispersion:
∂2 n
<0
2
∂ω
Dispersive pulse broadening
τ p (0)
τ p (z)
t
t
Linear pulse propagation
Helmholtz equation:
∂ 2 E ( z, ω )
2
E ( z, ω ) = 0
+
k
ω
(
)
⎡
⎤
n
⎣
⎦
2
∂z
E˜ ( z,ω 0 + Δω ) = A˜ ( z,Δ ω )e −ikn (ω 0 ) z
Δω ≡ ω − ω 0
A ( z, Δω ) = ∫ A ( z,t )e−iΔω t dt
2
2
∂2 
∂ 

⎡
⎤
⎡
⎤
A
z,
Δ
A
z,
Δ
A
z,
Δ
ω
−
2ik
ω
ω
−
k
ω
ω
+
k
ω
+
Δ
ω
(
)
(
) ⎣ n ( 0 )⎦ (
) ⎣ n( 0
)⎦ A ( z, Δω ) = 0
n( 0)
2
∂z
∂z
“slowly varying envelope approximation”
∂A
<< kn (ω 0 ) A ,
∂z
∂A
<< ω 0 A
∂t
∂ 
A ( z, Δω ) + i Δ kn A ( z, Δω ) = 0
∂z
Very simple equation of motion for the pulse envelope in the spectral domain
with a very easy solution (i.e. a phase shift Δknz for each frequency component)
−i ⎡ k ω + Δω −k ω ⎤ z
A ( z, Δω ) = A ( 0, Δω ) e−iΔkn z = A ( 0, Δω ) e ⎣ n ( 0 ) n ( 0 )⎦
U. Keller, ULP, Chap. 2, p. 17-18
First and second order dispersion
Taylor expansion around the center frequency ω0 : Δω = ω − ω 0
1
kn (ω ) ≅ kn (ω 0 ) + kn′ Δω + kn′′Δω 2 + ...
2
First order dispersion:
kn′ = dkn dω
Second order dispersion:
kn′′ = d 2 kn dω 2
U. Keller, ULP, Chap. 2, p. 18
Phase and group velocity
2
⎡
⎤
⎡
⎤
⎛
⎞
⎛
⎞
z
z
⎥
E ( z,t ) ∝ exp ⎢iω 0 ⎜ t −
⎥ × exp ⎢ − Γ ( Ld ) × ⎜ t −
⎟
⎟
⎢
⎝ υ p (ω 0 ) ⎠ ⎥⎦
⎝ υ g (ω 0 ) ⎠ ⎥⎦
⎢⎣
⎣
vg
vp
υ p (ω 0 ) ≡ cn =
ω
kn
ω =ω 0
⎛ dω ⎞
1
1
υ g (ω 0 ) ≡
=
=⎜
dk
kn′ (ω 0 ) ⎛ n ⎞
⎝ dkn ⎟⎠ ω = ω 0
⎜⎝
⎟
dω ⎠ ω = ω 0
U. Keller, ULP, Chap. 2, p. 19-20
Dispersive pulse broadening
τ p (0)
τ p (z)
t
t
⎛ 4 ln 2 d φ dω ⎞
τ p (z )
= 1+ ⎜
⎟
2
τ p ( 0)
τ p ( 0)
⎝
⎠
2
Gaussian pulse:
(initially unchirped pulse)
Approximation for
(strong pulse broadening)
dφ
2
>>
τ
p ( 0)
2
dω
2
2
2
d 2φ
τ p (z ) ≈ 2 Δω p
dω
U. Keller, ULP, Chap. 2, p. 21-23
Phase Velocity υ p
ω
kn
c
n
Group Velocity υg
dω
dkn
1
c
n 1− dn λ
dλ n
z dφ
Tg = =
, φ ≡ kn z
υ g dω
nz ⎛ dn λ ⎞
1−
⎝
c
dλ n ⎠
Dispersion 1. Order
(Group Delay, GD)
dφ
dω
nz ⎛ dn λ ⎞
1−
c ⎝ dλ n ⎠
Dispersion 2. Order
(Group Delay
Dispersion, GDD)
d 2φ
dω 2
λ3 z d 2 n
2πc2 dλ2
Dispersion 3. Order
(Third-Order
Dispersion, TOD)
d 3φ
dω 3
− λ4 z ⎛⎜ d 2 n
d 3 n ⎞⎟
2 3 3
2 +λ
4π c ⎝ dλ
dλ3 ⎠
Group Delay
Tg
U. Keller, ULP, Chap. 2, p. 27
Example: fused quartz
n⎝⎜ 0.8 µm⎠⎟ = 1.45332
⎛
⎞
1
∂n
= − 0.017 µm
∂λ 800 nm
∂kn
∂ω
∂2n
1
=
0.04
∂λ2 800 nm
µm 2
∂2kn
∂ω 2
Pulse broadening
1000
800 nm
3
1cm
Example:
What is the final pulse duration:
10cm 1m
10 fs pulse through 10 lenses, each
1 cm thick?
2
1.5
10
fs2
= 36.1 mm
Fused quartz @ 800 nm
2.5
100
800 nm
= 4.84 ns
m
10 fs pulse through 10 cm fused quartz?
1
0.5
1
0
-15
1fs
-14.5
-14
10fs
-13.5
-13
100fs
-12.5
-12
1ps
Incident pulse width (s)
U. Keller, ULP, Chap. 2, p. 22
Optical communication
λ0 [ m]
Losses [dB/km]
0.87
1.312
1.55
1.5
0.3
0.16
nd
2 order dispersion
[ps/km⋅nm]
-80
0
+17
1 dTg
ω 2 dTg
GVD : Dλ ≡ −
=
LF d λ 2π cLF dω
⇒ units :
ps
km ⋅ nm
2π cLd Dλ
d 2φ
τ p ( Ld ) =
Δ
ω
=
Δω = Dλ ⋅ Ld ⋅ Δλ
dω 2
ω2
U. Keller, ULP, Chap. 2, p. 31
Higher order dispersion
φ (ω ) = φ 0 +
∂φ
∂ω
(ω − ω ) +
0
1 ∂φ
2
2 ∂ω
2
(ω − ω )
0
2
+
1 ∂φ
3
6 ∂ω
3
(ω − ω )
+ ...
∂φ ∂ω
First order dispersion (group delay)
Second order dispersion (group delay dispersion - GDD)
Third order dispersion (TOD)
0
3
3
∂ φ ∂ω
3
∂ 2φ ∂ω
2
…
U. Keller, ULP, Chap. 2, p. 37
Wigner representation of ultrashort pulses
Wigner distribution:
W (t, ω ) =
⎛ t ′ ⎞ * ⎛ t ′ ⎞ −iω t ′
E
∫−∞ ⎜⎝ t + 2 ⎟⎠ E ⎜⎝ t − 2 ⎟⎠ e dt ′
∞
“window” function
W (t, ω ) =
1
2π
∞
ω′⎞ *⎛
ω ′ ⎞ iω ′t
⎛
E
ω
+
ω
−
E
∫−∞ ⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ e dω ′
Time-frequency representation /
windowed Fourier transform /
“instantaneous spectrum vs time”
Example:
Properties:
∞
2
• I(t) = E(t) = ∫ W (t,ω )dω
−∞
2
∞
• I(ω ) = E(ω ) = ∫ W (t,ω )dt
−∞
• Linear propagation in non-absorbing
medium conserves area (≘ minimum time-bandwidth product)
Effect of dispersion orders on Wigner trace
Everything calculated for an initially 10-fs long Gaussian pulse
After 100 fs2 of GDD:
ϕ (ω ) =
1
2
⋅100 fs 2 ⋅ (ω − ω 0 )
2
• Pulse remains Gaussian in time!
• Chirp is linear
Effect of dispersion orders on Wigner trace
Everything calculated for an initially 10-fs long Gaussian pulse
After 1000 fs3 of TOD:
ϕ (ω ) =
1
3
⋅1000 fs 3 ⋅ (ω − ω 0 )
6
• “Beating of simultaneous frequencies”
causes post-(pre-)pulses
Effect of dispersion orders on Wigner trace
Everything calculated for an initially 10-fs long Gaussian pulse
After 10000 fs4 of FOD:
ϕ (ω ) =
1
4
⋅10000 fs 4 ⋅ (ω − ω 0 )
24
• Even dispersion orders yield symmetric
pulse distortions in time
(for a symmetric spectrum)
Pulse after 3 mm of fused silica
Everything calculated for an initially 10-fs long Gaussian pulse
After 3 mm of fused silica (800 nm center wavelength):
ϕ (ω ) = 3 mm ⋅ k ⋅ n(ω )
• Chirp is dominantly linear – however,
influence of higher orders clearly visible
• Pulse is not Gaussian in time anymore!
Higher order dispersion
Material
Fused quartz
Refractive index n ( λ )
At 800 nm
Propagation constant kn (ω )
At 800 nm
∂n
1
= −0.017
∂λ 800 nm
µm
∂ kn
∂ω
n ( 800 nm ) = 1.45332
1
∂ n
= 0.04
2
µm 2
∂λ 800 nm
∂ kn
∂ω 2
1
∂ n
= −0.24
3
µm 3
∂λ 800 nm
∂ kn
∂ω 3
∂n
1
= −0.0496
∂λ 800 nm
µm
∂ kn
∂ω
2
3
SF10-glass
n ( 800 nm ) = 1.71125
1
∂ n
= −0.997
3
µm 3
∂λ 800 nm
∂ kn
∂ω 3
∂n
1
= −0.0268
∂λ 800 nm
µm
∂ kn
∂ω
n ( 800 nm ) = 1.76019
800 nm
3
∂ kn
∂ω 2
3
Sapphire
2
1
∂ n
= 0.176
2
µm 2
∂λ 800 nm
2
800 nm
800 nm
800 nm
800 nm
3
800 nm
800 nm
∂ kn
∂ω 2
1
∂ 3n
= −0.377
3
µm 3
∂λ 800 nm
∂ 3 kn
∂ω 3
800 nm
800 nm
fs 2
s2
= 36.1
m
mm
= 2.74 × 10
fs3
s3
= 27.4
m
mm
−41
s
m
= 1.59 × 10 −25
fs2
s2
= 159
m
mm
= 1.04 × 10 −40
fs 3
s3
= 104
m
mm
= 5.87 × 10 −9
2
s
m
= 3.61 × 10 −26
= 5.70 × 10 −9
2
1
∂ n
= 0.064
2
µm 2
∂λ 800 nm
2
= 4.84 × 10 −9
s
m
= 5.80 × 10 −26
fs 2
s2
= 58
m
mm
= 4.21 × 10 −41
fs3
s3
= 42.1
m
mm
U. Keller, ULP, Chap. 2, p. 38
Higher order dispersion
φ (ω ) = φ 0 +
∂φ
∂ω
(ω − ω ) +
0
1 ∂φ
2
2 ∂ω
2
(ω − ω )
0
2
+
1 ∂φ
3
6 ∂ω
3
(ω − ω )
+ ...
∂φ ∂ω
First order dispersion (group delay)
Second order dispersion (group delay dispersion - GDD)
Third order dispersion (TOD)
0
3
3
∂ φ ∂ω
3
∂ 2φ ∂ω
2
…
GDD becomes important, when: GDD > τ 02
TOD becomes important, when: TOD > τ 03
Dispersion lengths:
Gaussian pulse
Soliton pulse
τ2
τ3
LD ≡
, LD′ ≡
kn′′
kn′′′
⎛ t2 ⎞
E ( t ) ∝ exp ⎜ − 2 ⎟ ⇒ τ p = 2 ln2 τ = 1.665 τ
⎝ 2τ ⎠
⎛t⎞
E ( t ) ∝ sech ⎜ ⎟ ⇒ τ p = 2ln 1 + 2 τ = 1.763 τ
⎝τ⎠
(
)
τ p (z)
1
1
≅ z 1+ 2 +
LD 4 LD′ 2
τ p (0)
U. Keller, ULP, Chap. 2, p. 37
Related documents