Download Higher Linear Algebra - University of California, Riverside

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Higher Linear Algebra
Alissa S. Crans
tt
tttttt
t
t
t
t
v~ tttt
JJJJJJ
JJJJJJ
JJJJ
BBB
HHH B
H
Ã(
LLL
ÄÄÄÄ
ÄÄÄÄ
Ä
Ä
ÄÄ
ÄÄÄ
{¤ ÄÄÄ
????
????
????
????
??¾#
77
;; 77
;;
;;
77 ;;
77
????
????
????
????
??¾#
LLL
ÄÄÄÄ
ÄÄÄÄ
Ä
Ä
ÄÄ
ÄÄÄ
{¤ ÄÄÄ
JJJJJJ
JJJJJJ
JJJJ
Ã(
CC
BBB C
B
;;
;;
777
tttt
tttttt
t
t
t
v~ ttt
Advised by: John C. Baez
University of California, Riverside
E-mail: [email protected]
June 2004
Higher Dimensional Algebra VI: Lie 2-algebras
Available at: http://arxiv.org/math.QA/0307263
Categorified vector spaces
• Kapranov and Voevodsky defined a
finite-dimensional 2-vector space to be a
category of the form Vectn.
• Instead, we define a 2-vector space to be
a category in Vect.
We have a 2-category, 2Vect whose:
– objects are 2-vector spaces,
– 1-morphisms are linear functors between
these,
– 2-morphisms are linear natural transformations between these
• Proposition: 2Vect ' 2Term
A 2-vector space, V , consists of:
• a vector space V0 of objects,
• a vector space V1 of morphisms,
together with:
• linear source and target maps
s, t : V1 → V0,
• a linear identity-assigning map
i : V0 → V1,
• a linear composition map
◦ : V1 ×V0 V1 → V1
such that the following diagrams commute, expressing the usual
category laws:
• laws specifying the source and target of identity morphisms:
i /
V1
@@
@@
@@ s
V0 @
1 V0
Ã
i /
V
V0 @
1
@@
@@
t
1V0 @@Ã ²
²
V0
V0
• laws specifying the source and target of composite morphisms:
V1 ×V0 V1
◦
p1
V1
s
/
/
V1
p2
s
²
◦
V1 ×V0 V1
V1
/
²
t
²
V0
t
V1
/
²
V0
• the associative law for composition of morphisms:
V1 ×V0 V1 ×V0 V1
◦×V0 1
/
V1 ×V0 V1
1×V0 ◦
◦
²
◦
V1 ×V0 V1
/
²
V1
• the left and right unit laws for composition of morphisms:
V0 ×V0 FV1
i×1 /
V1 ×V0 V1 o 1×i V1 ×V0 V0
FF
FF
FF
FF
F
p2 FFFF
FF
FF
"
xx
xx
x
xx
xx
◦
x
xx p1
xx
x
² |xxx
V1
n-vector spaces
• An (n+1)-vector space is a strict n-category
in Vect.
We have a n-category, nVect whose:
– objects are n-vector spaces,
– 1-morphisms are strict linear functors between these,
– 2-morphisms are strict linear natural transformations between these, . . .
and so on!
• Proposition: (n + 1)Vect ' (n + 1)Term
L N
• ,
of n-vector spaces
Moral: Homological algebra is secretly
categorified linear algebra!
Questions still remain:
• What about weak n-categories in Vect?
• What about weakening laws governing
addition and scalar multiplication?
Categorified Linear Algebra
Associative algebras A∞-algebras
Commutative algebras E∞-algebras
Lie algebras
L∞-algebras
Coalgebras
?
Hopf Algebras
?
..
..
Given a vector space V and an isomorphism
B : V ⊗ V → V ⊗ V,
we say B is a Yang–Baxter operator if it
satisfies the Yang–Baxter equation, which
says that:
(B ⊗1)(1⊗B)(B ⊗1) = (1⊗B)(B ⊗1)(1⊗B),
or in other words, that this diagram commutes:
V ⊗ V ⊗ VUUUU
jj
jjjj
j
1⊗B
j
j
jjj
jjjj
j
j
j
ju
UUUU
UUB⊗1
UUUU
UUUU
UUUU
*
V ⊗V ⊗V
V ⊗V ⊗V
1⊗B
B⊗1
²
²
V ⊗ V ⊗ TVTTT
TTTT
TTTT
TT
B⊗1 TTTTTT)
V ⊗V ⊗V
ii
iiii
i
i
i
iiii
iiiiB⊗1
i
i
i
it i
V ⊗V ⊗V
If we draw B : V ⊗ V → V ⊗ V as a braiding:
V
V
B=
V
V
the Yang–Baxter equation says that:
V
V
V
V
V
V
=
%%
V
%%
%%
%%
%%
%
V
V
V
V
V
Proposition: Let L be a vector space over k
equipped with a skew-symmetric bilinear
operation
[·, ·] : L × L → L.
Let L0 = k ⊕ L and define the isomorphism
B : L0 ⊗ L0 → L0 ⊗ L0 by
B((a, x)⊗(b, y)) = (b, y)⊗(a, x)+(1, 0)⊗(0, [x, y]).
Then B is a solution of the Yang–Baxter
equation if and only if [·, ·] satisfies the Jacobi
identity.
Goal
Develop a higher-dimensional analogue,
obtained by categorifying everything in sight!
A semistrict Lie 2-algebra consists of:
• a 2-vector space L
equipped with:
• a skew-symmetric bilinear functor, the bracket,
[·, ·] : L × L → L
• a completely antisymmetric trilinear natural
isomorphism, the Jacobiator,
Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y],
that is required to satisfy:
• the Jacobiator identity:
J[w,x],y,z ◦ [Jw,x,z , y] ◦ (Jw,[x,z],y + J[w,z],x,y + Jw,x,[y,z]) =
[Jw,x,y , z] ◦ (J[w,y],x,z + Jw,[x,y],z ) ◦ [Jw,y,z , x] ◦ [w, Jx,y,z ]
for all w, x, y, z ∈ L0.
[[[w, x], y], z]
kkk
kkk
k
k
[Jw,x,y ,z]kkk
k
kkk
kkk
k
k
kk
ku kk
[[[w, y], x], z] + [[w, [x, y]], z]
SSS
SSS
SSS
SSS 1
SSS
SSS
SSS
SSS
S)
[[[w, x], y], z]
J[w,y],x,z +Jw,[x,y],z
J[w,x],y,z
²
[[[w, y], z], x] + [[w, y], [x, z]]
+[w, [[x, y], z]] + [[w, z], [x, y]]
²
[[[w, x], z], y] + [[w, x], [y, z]]
[Jw,x,z ,y]
[Jw,y,z ,x]
²
[[[w, z], y], x] + [[w, [y, z]], x]
+[[w, y], [x, z]] + [w, [[x, y], z]] + [[w, z], [x, y]]
RRR
RRR
RRR
RRR
RRR
R
[w,Jx,y,z ] RRRRR
RRR
RR)
²
[[w, [x, z]], y]
+[[w, x], [y, z]] + [[[w, z], x], y]
lll
lll
l
l
lll Jw,[x,z],y
lll
l
l
l
+J[w,z],x,y + Jw,x,[y,z]
lll
lll
l
l
lu
[[[w, z], y], x] + [[w, z], [x, y]] + [[w, y], [x, z]]
+[w, [[x, z], y]] + [[w, [y, z]], x] + [w, [x, [y, z]]]
Zamolodchikov tetrahedron equation
Given a 2-vector space V and an invertible linear
functor B : V ⊗V → V ⊗V , a linear natural isomorphism
Y : (B ⊗ 1)(1 ⊗ B)(B ⊗ 1) ⇒ (1 ⊗ B)(B ⊗ 1)(1 ⊗ B)
satisfies the Zamolodchikov tetrahedron equation
if:
[Y ◦ (1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1)][(1⊗B⊗1)(B⊗1⊗1) ◦ Y ◦ (B⊗1⊗1)]
[(1⊗B⊗1)(1⊗1⊗B) ◦ Y ◦ (1⊗1⊗B)][Y ◦ (B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B)]
=
[(B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B) ◦ Y ][(B⊗1⊗1) ◦ Y ◦ (B⊗1⊗1)(1⊗B⊗1)]
[(1⊗1⊗B) ◦ Y ◦ (1⊗1⊗B)(1⊗B⊗1)][(1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1) ◦ Y ]
We should think of Y as the surface in 4-space traced
out by the process of performing the third Reidemeister
move:
Y:
⇒
%%
%%
%%
%%
%%
%
Left side of Zamolodchikov tetrahedron
equation:
tttt
tttttt
t
t
t
t
v~ tttt
{¤
;;
;;
BB
BB
HH
HH
ÄÄÄÄ
ÄÄÄÄ
Ä
Ä
ÄÄ
ÄÄÄÄ
ÄÄÄÄ
77
77
7
????
????
????
????
????
¾#
LLL
JJJJJJ
JJJJJJ
JJJJJJ
Ã(
CC
CC
BB
BB
;;
;;
77
7
Right side of Zamolodchikov tetrahedron
equation:
JJJJJJ
JJJJJJ
JJJJJJ
Ã(
BB
BB
HH
HH
LLL
????
????
????
????
????
¾#
77
77
7
{¤
BB
BB
CC
CC
;;
;;
77
7
v~
tttttt
t
t
t
t
tt
tttttt
ÄÄ
ÄÄÄÄ
Ä
Ä
Ä
ÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
;;
;;
In short, the Zamolodchikov tetrahedron
equation is a formalization of this commutative
octagon:
v~
tttttt
t
t
t
t
tt
tttttt
JJJJJJ
JJJJJJ
JJJJJJ
BB
BB
HH
HH
LLL
ÄÄÄÄ
ÄÄÄÄ
Ä
Ä
ÄÄ
ÄÄÄÄ
Ä
Ä
Ä
{¤ Ä
;;
;;
Ã(
????
????
????
????
????
¾#
77
77
7
77
77
7
????
????
????
????
????
¾#
LLL
ÄÄ
ÄÄÄÄ
Ä
Ä
ÄÄ
ÄÄÄÄ
Ä
Ä
Ä
{¤ ÄÄÄ
JJJJJJ
JJJJJJ
JJJJJJ
Ã(
CC
CC
BB
BB
;;
;;
77
7
tt
tttttt
t
t
t
ttt
v~ tttt
;;
;;
Theorem: Let L be a 2-vector space, let [·, ·] : L×L → L be a skewsymmetric bilinear functor, and let J be a completely antisymmetric
trilinear natural transformation with
Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y].
Let L0 = K ⊕ L, where K is the categorified ground field.
Let B : L0 ⊗ L0 → L0 ⊗ L0 be defined as follows:
B((a, x) ⊗ (b, y)) = (b, y) ⊗ (a, x) + (1, 0) ⊗ (0, [x, y])
whenever (a, x) and (b, y) are both either objects or morphisms in
L0. Finally, let
Y : (B ⊗ 1)(1 ⊗ B)(B ⊗ 1) ⇒ (1 ⊗ B)(B ⊗ 1)(1 ⊗ B)
be defined as follows:
L0 ⊗ L0 ⊗ L0
p⊗p⊗p
²
L⊗L⊗L
(x,y,z)
J +3
Y =
[[x,y],z]
$
L
z
[x,[y,z]]+[[x,z],y]
aÄ _
j
0
²
L ⊗ L0 ⊗ L0
(1,0)⊗(1,0)⊗(0,a)
where a is either an object or morphism of L. Then Y is a solution
of the Zamolodchikov tetrahedron equation if and only if J satisfies
the Jacobiator identity.
Hierarchy of Higher Commutativity
Topology
Algebra
Crossing
Commutator
Crossing of crossings Jacobi identity
Crossing of crossing
Jacobiator
of crossings
identity
..
..
Examples
Theorem: There is a one-to-one
correspondence between equivalence classes of
Lie 2-algebras (where equivalence is as objects of
the 2-category Lie2Alg) and isomorphism classes
of quadruples consisting of a Lie algebra g, a
vector space V , a representation ρ of g on V ,
and an element of H 3(g, V ).
Example: Given a finite-dimensional, simple
Lie algebra g over C, H 3(g, C) = C, so we can
construct a Lie 2-algebra with nontrivial
Jacobiator consisting of:
• L0 = g
• L1 = identity morphisms
• Jx,y,z = f (x, y, z)1[[x,y],z] where f : g3 → C
is a nontrivial 3-cocycle
In fact, we can take Jx,y,z = ~hx, [y, z]i1 for
~ ∈ C.
Lie 2-groups
A coherent 2-group is a weak monoidal category C in which every morphism is invertible
and every object x ∈ C is equipped with an
adjoint equivalence (x, x̄, ix, ex).
A Lie 2-group is a coherent 2-group object in
DiffCat.
Related documents