Download Population Standard Deviation of a Discrete Random Variable

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CHAPTER 16
Standard Deviation of a
Discrete Random Variable
First center (expected
value)
Now - spread
Standard Deviation of a
Discrete Random Variable
Measures how “spread out”
the random variable is
Summarizing data and
probability
Data
Histogram
measure of the
center: sample mean
x
measure of spread:
sample standard
deviation s
Random variable
Probability Histogram
measure of the
center: population
mean m
measure of spread:
population standard
deviation s
Example
x
0
100
p(x)
1/2 1/2
E(x) = 0(1/2) + 100(1/2) = 50
y
49 51
p(y)
1/2 1/2
E(y) = 49(1/2) + 51(1/2) = 50
Variance
Variation
n
s2 =
 (X
i
 X) 2
i=1
n-1
=
1805.703
= 53.1089
34
The deviations of the outcomes from the
mean of the probability distribution
xi - µ
Xi - X
s2 (sigma squared) is the variance of the
probability distribution
Variance
Variation
s2
k
=
n
s2 =
 (X
i
 X) 2
i=1
n-1
2
(
x

m
)
 P( X = x i )
 i
i =1
=
1805.703
= 53.1089
34
Economic
Scenario
Variation
s2
Profit X
($ Millions)
Probability P
Great
x1 10
P(X=x1) 0.20
Good
x2 5
P(X=x2) 0.40
OK
x3 1
P(X=x3) 0.25
Lousy
x4 -4
P(X=x4) 0.15
k
=
2
(
x

m
)
 P( X = x i )
 i
i =1
Example 3.65
3.65
3.65
s2 = (x1-µ)2 · P(X=x1) + (x2-µ)2 · P(X=x2) +
3.65
(x3-µ)2 · P(X=x3) + (x4-µ)2 · P(X=x4)
= (10-3.65)2 · 0.20 + (5-3.65)2 · 0.40 +
(1-3.65)2 · 0.25 + (-4-3.65)2 · 0.15 =
19.3275
P. 207, Handout 4.1, P. 4
Standard Deviation: of
More Interest then the
Variance
The population standard deviation is the square root
of the population variance
s  s

Standard Deviation
Standard
Deviation
Standard Deviation (s) =
Positive Square Root of the Variance
s =
s2
s2 = 19.3275
s, or SD, is the standard deviation of the
probability distribution
s (or SD) = s
2
s (or SD) = 19.3275  4.40 ($ mil.)
Probability Histogram
Probability
.40
.35
.30
.25
.20
.15
Lousy
s = 4.40
Good
OK
Great
.10
.05
-4
-2
0
2
4
Profit
µ=3.65
6
8
10
12
Finance and Investment
Interpretation
X = return on an investment (stock,
portfolio, etc.)
E(x) = m  expected return on this
investment
s is a measure of the risk of the
investment
Example
x
s2
0
1
1
3
p( x)
8
8
Compute the variance
k
=
2
(
x

m
)
 P( X = x i )
 i
i =1
2
3
8
:
3
1
8
m 
s 2  (0  1.5) 2  18   (1  1.5) 2  83   (2  1.5) 2  83   (3  1.5) 2  18 
 2.25 18   .25 83   .25 83   2.25 18 
 .75.
s  s

 .75  .866
Example (cont.)
m, s866
Specify the interval (m  s, m  s)
(1.5 - 1(.866), 1.5 + 1(.866))
(1.5 - .866, 1.5 + .866)
(.634, 2.366)
P(.634  x  2.366) =
p(1)+p(2)=3/8 + 3/8 = 3/4
68-95-99.7 Rule for
Random Variables
For random variables x whose probability
histograms are approximately moundshaped:
Pm  s  x  m  s  68
Pm  s  x  m  s  9
P(m 3s  x  m  3s  997
Rules for E(X), Var(X) and SD(X):
adding a constant a
If X is a rv and a is Example: a = -1
a constant:
 E(X+a) = E(X)+a
 E(X+a)=E(X-1)=E(X)-1
Rules for E(X), Var(X) and SD(X):
adding constant a (cont.)
Var(X+a) = Var(X)
SD(X+a) = SD(X)
Example: a = -1
 Var(X+a)=Var(X-1)=Var(X)
 SD(X+a)=SD(X-1)=SD(X)
Economic Profit X
Scenario ($ Millions)
Probability P
Economic Profit X+2
Scenario ($ Millions)
Great
x1 10
P(X=x1) 0.20
Great
Good
x2 5
P(X=x2) 0.40
OK
x3 1
Lousy
x4 -4
Probability P
P(X=x1) 0.20
Good
x1+ 10+2
2
x2+2 5+2
P(X=x3) 0.25
OK
x3+2 1+2
P(X=x3) 0.25
P(X=x4) 0.15
Lousy
x4+2 -4+2
P(X=x4) 0.15
P(X=x2) 0.40
E(x + a) = E(x) + a; Var(x + a)=Var (x); let a = 2
s = 4.40
Probability
-4
-2
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
0
2
4
Profit
m3.65
6
8
10
12
14
s = 4.40
Probability
-4
-2
0
2
4
6
8
Profit
m5.65
10
12
14
New Expected Value
Long (UNC-CH) way:
E(x+2)=12(.20)+7(.40)+3(.25)+(-2)(.15)
= 5.65
Smart (NCSU) way:
a=2; E(x+2) =E(x) + 2 = 3.65 + 2 = 5.65
New Variance and SD
Long (UNC-CH) way: (compute from
“scratch”)
Var(X+2)=(12-5.65)2(0.20)+…
+(-2+5.65)2(0.15) = 19.3275
SD(X+2) = √19.3275 = 4.40
Smart (NCSU) way:
Var(X+2) = Var(X) = 19.3275
SD(X+2) = SD(X) = 4.40
Rules for E(X), Var(X) and SD(X):
multiplying by constant b
E(bX)=b E(X)
 Var(b X) = b2Var(X)
 SD(bX)= |b|SD(X)
 Example: b =-1
 E(bX)=E(-X)=-E(X)
 Var(bX)=Var(-1X)=
=(-1)2Var(X)=Var(X)
 SD(bX)=SD(-1X)=
=|-1|SD(X)=SD(X)
Expected Value and SD of Linear
Transformation a + bx
Let X=number of repairs a new computer needs each year.
Suppose E(X)= 0.20 and SD(X)=0.55
The service contract for the computer offers unlimited repairs
for $100 per year plus a $25 service charge for each repair.
What are the mean and standard deviation of the yearly cost of
the service contract?
Cost = $100 + $25X
E(cost) = E($100+$25X)=$100+$25E(X)=$100+$25*0.20=
= $100+$5=$105
SD(cost)=SD($100+$25X)=SD($25X)=$25*SD(X)=$25*0.55=
=$13.75
Addition and Subtraction Rules
for Random Variables
 E(X+Y) = E(X) + E(Y);
 E(X-Y) = E(X) - E(Y)
 Var(X−Y)=Var(X)+Var(Y)
 SD(X −Y)= Var ( X )  Var (Y )
 When X and Y are
independent random
variables:
 Var(X+Y)=Var(X)+Var(Y)
 SD(X+Y)= Var ( X )  Var (Y )
SD’s do not subtract:
SD(X−Y)≠ SD(X)−SD(Y)
SD(X−Y)≠ SD(X)+SD(Y)
SD’s do not add:
SD(X+Y)≠ SD(X)+SD(Y)
In general, if X and Y are RVs,
Var(X+Y) ≠ Var(X)+Var(Y)
SD(X+Y) ≠ SD(X)+SD(Y)
Special case (previous slide): If RVs are
Independent:
Variances add: Var(X+Y)=Var(X)+Var(Y)
but…
Standard Deviations still DO NOT add:
SD(X+Y)≠SD(X)+SD(Y)
Pythagorean Theorem of Statistics: variances add;
standard deviations do not add
a2 + b2 = c 2
Var(X)+Var(Y)=Var(X+Y)
c2
Var(X)
a2
Var(X+Y)
a
c
SD(X+Y)
SD(X)
b
SD(Y)
b2
Var(Y)
a+b≠c
SD(X)+SD(Y) ≠SD(X+Y)
Pythagorean Theorem of Statistics: variances add;
standard deviations do not add
32 + 42 = 52
Var(X)+Var(Y)=Var(X+Y)
25
Var(X)
9
Var(X+Y)
3
5
SD(X+Y)
SD(X)
4
SD(Y)
16
Var(Y)
3+4≠5
SD(X)+SD(Y) ≠SD(X+Y)
Motivation for
Var(X-Y)=Var(X)+Var(Y)
 Let X=amount automatic dispensing machine
puts into your 16 oz drink (say at McD’s)
 A thirsty, broke friend shows up.
Let Y=amount you pour into friend’s 8 oz cup
 Let Z = amount left in your cup; Z = ?
 Z = X-Y
Has 2 +
components
Var(Y)
 Var(Z) = Var(X-Y) = Var(X)
For random variables, X+X≠2X
 Let X be the annual payout on a life insurance policy.
From mortality tables E(X)=$200 and SD(X)=$3,867. If
the payout amounts are doubled, what are the new
expected value and standard deviation?
The risk to the
 Double payout is 2X. E(2X)=2E(X)=2*$200=$400
insurance co. when
 SD(2X)=2SD(X)=2*$3,867=$7,734 doubling the payout
 Suppose insurance policies are sold to 2 people.
The
(2X) is not
the same
annual payouts are X1 and X2. Assume theas2the
people
risk when
behave independently. What are the expected
selling value
policies to 2
and standard deviation of the total payout?
people.
 E(X1 + X2)=E(X1) + E(X2) = $200 + $200 = $400
SD(X1 + X2 )= Var ( X1  X 2 )  Var ( X1 )  Var ( X 2 )
 (3867)2  (3867)2  14,953,689  14,953,689
 29,907,378  $5,468.76
Related documents