Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
example 1 Solve the system Solution by Elimination 2 x 3 y z 1 x y 2 z 3 3x y z 9 Chapter 7.1 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 1. If necessary, interchange two equations or use multiplication to make the coefficient of x in the first equation a 1. 2 x 3 y z 1 x y 2 z 3 3x y z 9 E1 E2 x y 2 z 3 2 x 3 y z 1 3x y z 9 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 2 x 3 y z 1 3x y z 9 -2 R1 + R2 R2 2x 2 y 4z 6 2 x 3 y z 1 x y 2 z 3 y 3z 5 3x y z 9 y 3z 5 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 2 x 3 y z 1 3x y z 9 -2 E1 + E2 E2 2x 2 y 4z 6 2 x 3 y z 1 x y 2 z 3 y 3z 5 3x y z 9 y 3z 5 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 2 x 3 y z 1 3x y z 9 -2 E1 + E2 E2 2x 2 y 4z 6 2 x 3 y z 1 x y 2 z 3 y 3z 5 3x y z 9 y 3z 5 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 y 3z 5 3x y z 9 -3 R1 + R3 R3 3 x 3 y 6 z 9 3x y z 9 x y 2 z 3 y 3z 5 4 y 7 z 18 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 y 3z 5 3x y z 9 -3 E1 + E3 E3 3 x 3 y 6 z 9 3x y z 9 x y 2 z 3 y 3z 5 4 y 7 z 18 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 y 3z 5 3x y z 9 -3 E1 + E3 E3 3 x 3 y 6 z 9 3x y z 9 x y 2 z 3 y 3z 5 4 y 7 z 18 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 2. Add a multiple of the first equation to each of the following equations so that the coefficients of x in the second and third equations become 0. x y 2 z 3 y 3z 5 3x y z 9 -3 E1 + E3 E3 3 x 3 y 6 z 9 3x y z 9 x y 2 z 3 y 3z 5 4 y 7 z 18 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 3. Multiply (or divide) both sides of the second equation by a number that makes the coefficient of y in the second equation equal to 1. x y 2 z 3 y 3z 5 4 y 7 z 18 -1 R2 R2 x y 2 z 3 y 3 z 5 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 3. Multiply (or divide) both sides of the second equation by a number that makes the coefficient of y in the second equation equal to 1. x y 2 z 3 y 3z 5 4 y 7 z 18 -1 E2 E2 x y 2 z 3 y 3 z 5 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 3. Multiply (or divide) both sides of the second equation by a number that makes the coefficient of y in the second equation equal to 1. x y 2 z 3 y 3z 5 4 y 7 z 18 -1 E2 E2 x y 2 z 3 y 3 z 5 4 y 7 z 18 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 4. Add a multiple of the (new) second equation to the (new) third equation so that the coefficient of y in the newest third equation becomes 0. x y 2 z 3 y 3 z 5 4 y 7 z 18 -4 R2 + R3 R3 4 y 12 z 20 4 y 7 z 18 x y 2 z 3 y 3 z 5 19 z 38 19 z 38 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 4. Add a multiple of the (new) second equation to the (new) third equation so that the coefficient of y in the newest third equation becomes 0. x y 2 z 3 y 3 z 5 4 y 7 z 18 -4 E2 + E3 E3 4 y 12 z 20 4 y 7 z 18 x y 2 z 3 y 3 z 5 19 z 38 19 z 38 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 4. Add a multiple of the (new) second equation to the (new) third equation so that the coefficient of y in the newest third equation becomes 0. x y 2 z 3 y 3 z 5 4 y 7 z 18 -4 E2 + E3 E3 4 y 12 z 20 4 y 7 z 18 x y 2 z 3 y 3 z 5 19 z 38 19 z 38 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 4. Add a multiple of the (new) second equation to the (new) third equation so that the coefficient of y in the newest third equation becomes 0. x y 2 z 3 y 3 z 5 4 y 7 z 18 -4 E2 + E3 E3 4 y 12 z 20 4 y 7 z 18 x y 2 z 3 y 3 z 5 19 z 38 19 z 38 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 5. Multiply (or divide) both sides of the third equation by a number that makes the coefficient of z in the third equation equal to 1. This gives the solution for z in the system of equations. x y 2 z 3 y 3 z 5 19 z 38 191 E3 E3 x y 2 z 3 y 3 z 5 z 2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 5. Multiply (or divide) both sides of the third equation by a number that makes the coefficient of z in the third equation equal to 1. This gives the solution for z in the system of equations. x y 2 z 3 y 3 z 5 19 z 38 191 E3 E3 x y 2 z 3 y 3 z 5 z 2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 6. Use the solution for z to solve for y in the second equation. Then substitute values for y and z to solve for x in the first equation. x y 2 z 3 y 3 z 5 z 2 y 3 2 5 x 1 2 2 3 y 6 5 x 5 3 y 1 x2 2009 PBLPathways Solve the system 2 x 3 y z 1 x y 2 z 3 3x y z 9 Does the solution solve the system? 2 2 3 1 2 1 2 1 2 2 3 3 2 1 2 9 2009 PBLPathways