Download Phase imaging - EECS Berkeley

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Computational illumination for high‐resolution 3D phase imaging
Laura Waller
Department of Electrical Engineering and Computer Sciences
Affiliate: Bioengineering, Applied Sciences & Technology
UC Berkeley
[email protected]
www.laurawaller.com
L. Waller, UC Berkeley
1/45
Computational imaging
The computer becomes a part of the imaging system
1) Modify optical design
2) Take picture(s)
3) Crunch Data
4) Final result
5) Start company
Raytrix Gmbh
L. Waller, UC Berkeley
2/45
Optics Abstractions
Quantum optics
Electromagnetic optics
Wave optics
Geometrical optics
(ray tracing)
Paraxial ray optics
(matrix methods)
B. Saleh, Photonics.
L. Waller, UC Berkeley
3/45
Phase imaging: seeing the invisible
30um
» light is a wave, so has intensity and phase
» optical phase is too fast to capture directly
Intensity
radians
Phase
L. Waller, UC Berkeley
4/45
Intensity
Applications: biological microscopy
1um
Phase
E-coli
1
1
0.5
0.5
0
0
-0.5
-0.5
rad
endothelial cells
Human cheek cells
HeLa cells
L. Waller, UC Berkeley
5/45
Applications: X‐ray and EUV phase imaging
Photomask phase edges
E
LBNL tomography beamline
E
Absorption
degrees
2.5um
A. Shanker, et al. Applied Optics (2014).
L. Waller, UC Berkeley
Phase contrast
Bech, Martin, et al. Scientific reports 3 (2013).
» bioimaging
» materials characterization
» lithography
6/45
Phase retrieval is a nonlinear problem
x
Optical System Design
complex
function
optical system
A
detector
(measures intensity)
Algorithm
Intensity 
L. Waller, UC Berkeley
Ax
2
7/45
7/20
Phase from defocus
Z. Jingshan, L. Tian, J. Dauwels,
L. Waller, Optics Express (2014).
1
z stage
0.5
0
-0.5
focus
stack
camera
Intensity ( z )  Az x
L. Waller, UC Berkeley
2
40µm
radians
recovered phase
Leverages existing hardware
 software add‐on only
8/45
8/20
Phase from defocus with many images
Intensity stack
z
phase – old methods
rad
solve for phase
+ noise (SNR~0.5)
phase – our methods
High noise causes most techniques to break down!
Kalman filter [1‐3] provides optimal noise performance
[1] L. Waller, M. Tsang, S. Ponda, G. Barbastathis, Opt. Express 19 (2011).
[2] Z. Jingshan, J. Dauwels, M. Vazquez, L Waller, IEEE ICASSP 1229 (2012).
[3] Z. Jingshan, J. Dauwels, M. Vasquez, L. Waller , Opt. Express (2013).
L. Waller, UC Berkeley
9/45
9/20
Covariance matrix is impractically large
N=number of pixels > 1 Mpxl
Kalman filter must store and manipulate covariance matrix of size N2  Terabytes of data!
Sparsity of covariance matrix can be exploited:
Complexity
Kalman filter
Sparse Kalman
filter
Storage
O( N 3 )
O(N2 )
O(N log N)
O( N )
phase –
phase ‐augmented Kalman
Kalman filter
For our data, we achieve 1011 speed‐up
Z. Jingshan, J. Dauwels, M. Vasquez, L. Waller , Opt. Express (2013).
L. Waller, UC Berkeley
10/45
10/20
Focus step positions can be optimized
Recovered phase (radians)
1
0.5
0
-45.6 μm
Intensity stack
45.6 μm
-0.5
equally spaced
129 images
Z. Jingshan, R. Claus, J. Dauwels, L. Tian, L. Waller, Opt. Express 22(9), 10661-10674 (2014).
L. Waller, UC Berkeley
11/45
11/20
Focus step positions can be optimized
Recovered phase (radians)
1
0.5
0
-45.6 μm
Intensity stack
45.6 μm
-0.5
non‐equally spaced
5 images
Z. Jingshan, R. Claus, J. Dauwels, L. Tian, L. Waller, Opt. Express 22(9), 10661-10674 (2014).
L. Waller, UC Berkeley
12/45
12/20
x
Optical System Design
complex
function
optical system
A
detector
(measures intensity)
Algorithm
Intensity 
L. Waller, UC Berkeley
Ax
2
13/45
Computational illumination with an LED array
LED array
200µm
L.Tian, X.Li,
K.Ramchandran, L.
Waller, Biomed. Opt.
Express (2014).
25µm
Gigapixel
phase
imaging
camera
Real-time multi-contrast
3D imaging
brightfield
L. Tian, L. Waller,
Optica (2015).
L. Waller, UC Berkeley
darkfield
phase contrast
Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014).
14/45
Multi‐contrast in an LED array microscope
sample
existing microscope
Fourier space
camera
LED array
Brightfield Darkfield
» replace illumination unit with LED array
» Each LED corresponds to illumination by a different angle
Phase Contrast 200μm
L. Waller, UC Berkeley
15/45
Real‐time multi‐contrast imaging
Brightfield
Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014).
L. Waller, UC Berkeley
Dark field
Phase contrast
» 20x, NA~0.4, 30 Hz
» C. Elegans on NGM petri plate (Dillin lab, UCB)
16/45
Differential phase contrast
contrast is proportional to the derivative of phase![1‐3]
Left
Right
Left – Right
Left + Right
B. Kachar, Science 227, 27 (1985).
[1] D. Hamilton & C. Sheppard, J. Microscopy 133, 27 (1984).
[2] T. Ford, K. Chu & J. Mertz, Nat. Methods 9, 1195 (2012).
[3] S. B. Mehta and C. J. Sheppard, Opt. Lett. 34, 1924 (2009).
L. Waller, UC Berkeley
17/45
Transfer function for differential phase contrast ky
sample
Pupil space
pupil
kx
LED array
existing microscope
camera
» Amplitude information is symmetric in Fourier space
» Phase information is asymmetric
Phase to intensity
transfer function
20µm

L. Waller, UC Berkeley

18/19
18/45
Transfer function for differential phase contrast existing microscope
sample
ky
Pupil space
pupil
kx
LED array
camera
Phase transfer function
NA 2NA
» Similar to derivative model within NA
» 2x better resolution from partial coherence
[1] D. Hamilton, C. Sheppard, T. Wilson, J. Microscopy 135, 766 (1984).
[2] D. Hamilton, C. Sheppard, J. Microscopy 133, 27 (1984).
L. Waller, UC Berkeley
19/19
19/45
Quantitative phase from DPC measurements
existing microscope
sample
ky
Pupil space
pupil
kx
camera
LED array
Phase transfer function
DPC image
Phase
rad
1
‐1
20µm
L. Waller, UC Berkeley
20/19
20/45
It’s easy to change the DPC angle
LED array
camera
L. Waller, UC Berkeley
21/45
2‐axis DPC is good for accuracy & speed
Top‐bottom DPC
Left‐right DPC
2‐axis DPC
Reconstructed phase
Phase transfer function
20µm
L. Waller, UC Berkeley
22/45
Computational illumination with an LED array
LED array
200µm
L.Tian, X.Li,
K.Ramchandran, L.
Waller, Biomed. Opt.
Express (2014).
25µm
Gigapixel
phase
imaging
camera
Real-time multi-contrast
3D imaging
brightfield
L. Tian, L. Waller,
Optica (2015).
L. Waller, UC Berkeley
darkfield
phase contrast
Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014).
23/45
Darkfield images represent sub‐resolution features
sample’s Fourier space
ky
NAillumination
NA = NAobjective + NAillumination
NAobjective
kx
Can we stitch together all of Fourier space?
Our version of ideas in:
G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013).
L. Waller, UC Berkeley
low-resolution image
24/45
Scanning through all LEDs provides full coverage in Fourier space + overlap redundancy
ky
NAillumination
NAeff  NAobj  NAillum
 0.1  0.6
 0.7
kx
L. Waller, UC Berkeley
25/45
Fourier Ptychography achieves resolution beyond the diffraction limit of the objective
Raw data, central LED on
Reconstructed image
Full Field of View image
20µm
300µm
4x 0.1NA  NAeffective = 0.6
Our version of ideas in:
G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013).
L. Waller, UC Berkeley
26/45
Digital Aberration removal
Raw data,
central LED illumination
Reconstructed image
Full Field of View image
rad
4x 0.1NA Nikon, Synthesized NA = 0.6
recovered aberration
Our version of ideas in:
G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013).
O. Xu, C. Yang, Opt. Express (2013).
L. Waller, UC Berkeley
27/45
Reconstruction algorithm is nonlinear optimization
# of LEDs = 1
start with low‐resolution object initial guess
repeat for each measurement
Check estimate against data
– forward problem
1) Impose intensity constraint
2) Fourier support constraint
– inverse problem
# of LEDs = 21
Background correction[2]
# of LEDs = 293
Update object estimate
Regularization for robustness to noise[2]
[1] G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013).
[2] L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014).
L. Waller, UC Berkeley
28/45
Comparing to other phase imaging methods
Full 4x FoV phase reconstruction (synthetic 0.7 NA)
Phase from TIE 40x 0.65 NA
1
20µm
200µm
‐0.6
40x 0.65 NA Phase contrast
40x FoV
Intensity
Phase
unstained human breast basal epithelial cell MCF10A
L. Waller, UC Berkeley
29/45
Unstained
Human Bone Osteosarcoma Epithelial U2OS
(phase) sample
200µm
1
‐0.6
20µm
FoV~2.1mmx1.7mm
resolution ~400nm
(~0.7 NA)
Phase
Intensity
L. Waller, UC Berkeley
13k x 11k pixels reconstructed
30/45
We collect a lot of data
» For current resolution/FoV:
» ~300 images (16 bit, 5.5 Mpxl each) » Full frame rate of camera = 50 fps
» Speed limit = 0.55 Gb/s!
» Phase retrieval requires ~10x more data collected than reconstructed (overlap in Fourier space)
How can we use data more efficiently?
L. Waller, UC Berkeley
32/45
Coding strategies for phase?
ky
LED
array
sample
objective
pupil
plane
kx
camera
f
existing microscope
object’s Fourier space
» Illuminate sample from multiple LEDs
» Want:
1) LEDs far apart
2) Asymmetry for phase contrast
Random coding is good!
L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014).
L. Waller, UC Berkeley
33/45
Multiplexed illumination improves acquisition speed
sample’s Fourier space
ky
NAillumination
NAobjective
kx
L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014).
L. Waller, UC Berkeley
low-resolution image
34/45
Multiplexing reduces acquisition time and data
low resolution zoom‐in
Sequential 1 LED 293 images
T = 586s
Multiplexed 8 LEDs
293 images
T= 293s
Multiplexed 8 LEDs
40 images
T = 40s
50µm
Only uses 14% of the data!
synthesized NA=0.6
L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014).
L. Waller, UC Berkeley
35/45
35/20
Time‐lapse phase (in vitro)
200µm
60x FOV
15µm
1
‐0.6
80x FOV
40x FOV
1.7mm
10µm
20µm
20µm
40x FOV
~0.4µm
resolution
(0.7 NA)
Hela
Cells
L. Waller, UC Berkeley
2.1mm
36/45
LED array
3D intensity and phase imaging
camera
L. Waller, UC Berkeley
37/45
Scanning illumination angles relates to depth
LED array
scan illumination
in (x,y)
xi
camera
thick sample
zi
∆z
∆x
L. Waller, UC Berkeley
38/45
Light field dataset gives depth information
varying illumination angle
recovered 3D intensity
θx
y
x
θx
θx
x
x
Our version of ideas in:
G.Zheng, C. Kolner, C. Yang, Opt. Lett.. (2011).
L. Waller, UC Berkeley
39/45
Digital refocusing for phase contrast
LED
pattern
L
R
100µm
3D intensity
L. Tian, J. Wang, L. Waller, Opt. Lett. 39(5), 2014.
L. Waller, UC Berkeley
3D phase contrast
10x, NA = 0.25
Refocusing range: ‐100µm‐100µm
C. Elegans on NGM petri plate (Dillin lab)
40/45
Diffraction effects cause error in light field results
Light field refocus
z = -55 µm
Physical focus
z = 55 µm
50µm
We need phase to correct diffraction errors!
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
41/45
Diffraction effects cause error in light field results
z = -55 µm
Physical focus
Light field refocus
Our method
1
z = 55 µm
50µm
0
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
42/45
Multi‐slice model for 3D
LED array
3D sample
L. Waller, UC Berkeley
43/45
200µm
25µm
varying illumination
angle
θx
high
resolution
y
OR? AND?
x
3D
L. Waller, UC Berkeley
44/45
Can we get enhanced resolution + 3D?
Physical focus
3D Fourier Ptychography
z = -77 µm
Low‐resolution full FoV image
from 4 0.1 NA objective
z = 33 µm
50µm
300µm
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
10µm
45/45
Resolution depends on defocus distance
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
46/45
Resolution depends on defocus distance
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
47/19
47/45
3D reconstructions in phase and amplitude
x
y
z
L. Tian, L. Waller, Optica (2015).
L. Waller, UC Berkeley
Synthetic NA 0.7, Spirogyra algae
49/45
Current work: mobile microscopy
Brightfield
DPC Left/Right
Darkfield
LED array
DPC Top/Bottom
camera
L. Waller, UC Berkeley
51/45
Acknowledgements:
» Berkeley Computational Imaging Lab Find us on GigaPan: WallerLab_Berkeley
Twitter: @optrickster
Open-source code & datasets: www.laurawaller.com
» Samples from: Fletcher lab, Li Lab, Yildiz lab, UCB Stem Cell center, Dillin lab, Herr lab
» Funding:
L. Waller, UC Berkeley
52/45
Related documents