Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Computational illumination for high‐resolution 3D phase imaging Laura Waller Department of Electrical Engineering and Computer Sciences Affiliate: Bioengineering, Applied Sciences & Technology UC Berkeley [email protected] www.laurawaller.com L. Waller, UC Berkeley 1/45 Computational imaging The computer becomes a part of the imaging system 1) Modify optical design 2) Take picture(s) 3) Crunch Data 4) Final result 5) Start company Raytrix Gmbh L. Waller, UC Berkeley 2/45 Optics Abstractions Quantum optics Electromagnetic optics Wave optics Geometrical optics (ray tracing) Paraxial ray optics (matrix methods) B. Saleh, Photonics. L. Waller, UC Berkeley 3/45 Phase imaging: seeing the invisible 30um » light is a wave, so has intensity and phase » optical phase is too fast to capture directly Intensity radians Phase L. Waller, UC Berkeley 4/45 Intensity Applications: biological microscopy 1um Phase E-coli 1 1 0.5 0.5 0 0 -0.5 -0.5 rad endothelial cells Human cheek cells HeLa cells L. Waller, UC Berkeley 5/45 Applications: X‐ray and EUV phase imaging Photomask phase edges E LBNL tomography beamline E Absorption degrees 2.5um A. Shanker, et al. Applied Optics (2014). L. Waller, UC Berkeley Phase contrast Bech, Martin, et al. Scientific reports 3 (2013). » bioimaging » materials characterization » lithography 6/45 Phase retrieval is a nonlinear problem x Optical System Design complex function optical system A detector (measures intensity) Algorithm Intensity L. Waller, UC Berkeley Ax 2 7/45 7/20 Phase from defocus Z. Jingshan, L. Tian, J. Dauwels, L. Waller, Optics Express (2014). 1 z stage 0.5 0 -0.5 focus stack camera Intensity ( z ) Az x L. Waller, UC Berkeley 2 40µm radians recovered phase Leverages existing hardware software add‐on only 8/45 8/20 Phase from defocus with many images Intensity stack z phase – old methods rad solve for phase + noise (SNR~0.5) phase – our methods High noise causes most techniques to break down! Kalman filter [1‐3] provides optimal noise performance [1] L. Waller, M. Tsang, S. Ponda, G. Barbastathis, Opt. Express 19 (2011). [2] Z. Jingshan, J. Dauwels, M. Vazquez, L Waller, IEEE ICASSP 1229 (2012). [3] Z. Jingshan, J. Dauwels, M. Vasquez, L. Waller , Opt. Express (2013). L. Waller, UC Berkeley 9/45 9/20 Covariance matrix is impractically large N=number of pixels > 1 Mpxl Kalman filter must store and manipulate covariance matrix of size N2 Terabytes of data! Sparsity of covariance matrix can be exploited: Complexity Kalman filter Sparse Kalman filter Storage O( N 3 ) O(N2 ) O(N log N) O( N ) phase – phase ‐augmented Kalman Kalman filter For our data, we achieve 1011 speed‐up Z. Jingshan, J. Dauwels, M. Vasquez, L. Waller , Opt. Express (2013). L. Waller, UC Berkeley 10/45 10/20 Focus step positions can be optimized Recovered phase (radians) 1 0.5 0 -45.6 μm Intensity stack 45.6 μm -0.5 equally spaced 129 images Z. Jingshan, R. Claus, J. Dauwels, L. Tian, L. Waller, Opt. Express 22(9), 10661-10674 (2014). L. Waller, UC Berkeley 11/45 11/20 Focus step positions can be optimized Recovered phase (radians) 1 0.5 0 -45.6 μm Intensity stack 45.6 μm -0.5 non‐equally spaced 5 images Z. Jingshan, R. Claus, J. Dauwels, L. Tian, L. Waller, Opt. Express 22(9), 10661-10674 (2014). L. Waller, UC Berkeley 12/45 12/20 x Optical System Design complex function optical system A detector (measures intensity) Algorithm Intensity L. Waller, UC Berkeley Ax 2 13/45 Computational illumination with an LED array LED array 200µm L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). 25µm Gigapixel phase imaging camera Real-time multi-contrast 3D imaging brightfield L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley darkfield phase contrast Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014). 14/45 Multi‐contrast in an LED array microscope sample existing microscope Fourier space camera LED array Brightfield Darkfield » replace illumination unit with LED array » Each LED corresponds to illumination by a different angle Phase Contrast 200μm L. Waller, UC Berkeley 15/45 Real‐time multi‐contrast imaging Brightfield Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014). L. Waller, UC Berkeley Dark field Phase contrast » 20x, NA~0.4, 30 Hz » C. Elegans on NGM petri plate (Dillin lab, UCB) 16/45 Differential phase contrast contrast is proportional to the derivative of phase![1‐3] Left Right Left – Right Left + Right B. Kachar, Science 227, 27 (1985). [1] D. Hamilton & C. Sheppard, J. Microscopy 133, 27 (1984). [2] T. Ford, K. Chu & J. Mertz, Nat. Methods 9, 1195 (2012). [3] S. B. Mehta and C. J. Sheppard, Opt. Lett. 34, 1924 (2009). L. Waller, UC Berkeley 17/45 Transfer function for differential phase contrast ky sample Pupil space pupil kx LED array existing microscope camera » Amplitude information is symmetric in Fourier space » Phase information is asymmetric Phase to intensity transfer function 20µm L. Waller, UC Berkeley 18/19 18/45 Transfer function for differential phase contrast existing microscope sample ky Pupil space pupil kx LED array camera Phase transfer function NA 2NA » Similar to derivative model within NA » 2x better resolution from partial coherence [1] D. Hamilton, C. Sheppard, T. Wilson, J. Microscopy 135, 766 (1984). [2] D. Hamilton, C. Sheppard, J. Microscopy 133, 27 (1984). L. Waller, UC Berkeley 19/19 19/45 Quantitative phase from DPC measurements existing microscope sample ky Pupil space pupil kx camera LED array Phase transfer function DPC image Phase rad 1 ‐1 20µm L. Waller, UC Berkeley 20/19 20/45 It’s easy to change the DPC angle LED array camera L. Waller, UC Berkeley 21/45 2‐axis DPC is good for accuracy & speed Top‐bottom DPC Left‐right DPC 2‐axis DPC Reconstructed phase Phase transfer function 20µm L. Waller, UC Berkeley 22/45 Computational illumination with an LED array LED array 200µm L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). 25µm Gigapixel phase imaging camera Real-time multi-contrast 3D imaging brightfield L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley darkfield phase contrast Z. Liu, L. Tian, S. Liu, L. Waller, J. Biomed. Optics (2014). 23/45 Darkfield images represent sub‐resolution features sample’s Fourier space ky NAillumination NA = NAobjective + NAillumination NAobjective kx Can we stitch together all of Fourier space? Our version of ideas in: G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013). L. Waller, UC Berkeley low-resolution image 24/45 Scanning through all LEDs provides full coverage in Fourier space + overlap redundancy ky NAillumination NAeff NAobj NAillum 0.1 0.6 0.7 kx L. Waller, UC Berkeley 25/45 Fourier Ptychography achieves resolution beyond the diffraction limit of the objective Raw data, central LED on Reconstructed image Full Field of View image 20µm 300µm 4x 0.1NA NAeffective = 0.6 Our version of ideas in: G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013). L. Waller, UC Berkeley 26/45 Digital Aberration removal Raw data, central LED illumination Reconstructed image Full Field of View image rad 4x 0.1NA Nikon, Synthesized NA = 0.6 recovered aberration Our version of ideas in: G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013). O. Xu, C. Yang, Opt. Express (2013). L. Waller, UC Berkeley 27/45 Reconstruction algorithm is nonlinear optimization # of LEDs = 1 start with low‐resolution object initial guess repeat for each measurement Check estimate against data – forward problem 1) Impose intensity constraint 2) Fourier support constraint – inverse problem # of LEDs = 21 Background correction[2] # of LEDs = 293 Update object estimate Regularization for robustness to noise[2] [1] G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013). [2] L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). L. Waller, UC Berkeley 28/45 Comparing to other phase imaging methods Full 4x FoV phase reconstruction (synthetic 0.7 NA) Phase from TIE 40x 0.65 NA 1 20µm 200µm ‐0.6 40x 0.65 NA Phase contrast 40x FoV Intensity Phase unstained human breast basal epithelial cell MCF10A L. Waller, UC Berkeley 29/45 Unstained Human Bone Osteosarcoma Epithelial U2OS (phase) sample 200µm 1 ‐0.6 20µm FoV~2.1mmx1.7mm resolution ~400nm (~0.7 NA) Phase Intensity L. Waller, UC Berkeley 13k x 11k pixels reconstructed 30/45 We collect a lot of data » For current resolution/FoV: » ~300 images (16 bit, 5.5 Mpxl each) » Full frame rate of camera = 50 fps » Speed limit = 0.55 Gb/s! » Phase retrieval requires ~10x more data collected than reconstructed (overlap in Fourier space) How can we use data more efficiently? L. Waller, UC Berkeley 32/45 Coding strategies for phase? ky LED array sample objective pupil plane kx camera f existing microscope object’s Fourier space » Illuminate sample from multiple LEDs » Want: 1) LEDs far apart 2) Asymmetry for phase contrast Random coding is good! L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). L. Waller, UC Berkeley 33/45 Multiplexed illumination improves acquisition speed sample’s Fourier space ky NAillumination NAobjective kx L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). L. Waller, UC Berkeley low-resolution image 34/45 Multiplexing reduces acquisition time and data low resolution zoom‐in Sequential 1 LED 293 images T = 586s Multiplexed 8 LEDs 293 images T= 293s Multiplexed 8 LEDs 40 images T = 40s 50µm Only uses 14% of the data! synthesized NA=0.6 L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014). L. Waller, UC Berkeley 35/45 35/20 Time‐lapse phase (in vitro) 200µm 60x FOV 15µm 1 ‐0.6 80x FOV 40x FOV 1.7mm 10µm 20µm 20µm 40x FOV ~0.4µm resolution (0.7 NA) Hela Cells L. Waller, UC Berkeley 2.1mm 36/45 LED array 3D intensity and phase imaging camera L. Waller, UC Berkeley 37/45 Scanning illumination angles relates to depth LED array scan illumination in (x,y) xi camera thick sample zi ∆z ∆x L. Waller, UC Berkeley 38/45 Light field dataset gives depth information varying illumination angle recovered 3D intensity θx y x θx θx x x Our version of ideas in: G.Zheng, C. Kolner, C. Yang, Opt. Lett.. (2011). L. Waller, UC Berkeley 39/45 Digital refocusing for phase contrast LED pattern L R 100µm 3D intensity L. Tian, J. Wang, L. Waller, Opt. Lett. 39(5), 2014. L. Waller, UC Berkeley 3D phase contrast 10x, NA = 0.25 Refocusing range: ‐100µm‐100µm C. Elegans on NGM petri plate (Dillin lab) 40/45 Diffraction effects cause error in light field results Light field refocus z = -55 µm Physical focus z = 55 µm 50µm We need phase to correct diffraction errors! L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley 41/45 Diffraction effects cause error in light field results z = -55 µm Physical focus Light field refocus Our method 1 z = 55 µm 50µm 0 L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley 42/45 Multi‐slice model for 3D LED array 3D sample L. Waller, UC Berkeley 43/45 200µm 25µm varying illumination angle θx high resolution y OR? AND? x 3D L. Waller, UC Berkeley 44/45 Can we get enhanced resolution + 3D? Physical focus 3D Fourier Ptychography z = -77 µm Low‐resolution full FoV image from 4 0.1 NA objective z = 33 µm 50µm 300µm L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley 10µm 45/45 Resolution depends on defocus distance L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley 46/45 Resolution depends on defocus distance L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley 47/19 47/45 3D reconstructions in phase and amplitude x y z L. Tian, L. Waller, Optica (2015). L. Waller, UC Berkeley Synthetic NA 0.7, Spirogyra algae 49/45 Current work: mobile microscopy Brightfield DPC Left/Right Darkfield LED array DPC Top/Bottom camera L. Waller, UC Berkeley 51/45 Acknowledgements: » Berkeley Computational Imaging Lab Find us on GigaPan: WallerLab_Berkeley Twitter: @optrickster Open-source code & datasets: www.laurawaller.com » Samples from: Fletcher lab, Li Lab, Yildiz lab, UCB Stem Cell center, Dillin lab, Herr lab » Funding: L. Waller, UC Berkeley 52/45