Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY A Computational Method to Identify RNA Binding Sites in Proteins Presented by Jeff Sander Iowa State University Rocky 2006 BIOINFORMATICS AND COMPUTATIONAL BIOLOGY Biological Motivation • Protein RNA complexes Which /amino acids are – mRNA, tRNA, rRNA directly responsible for – miRNA, siRNA, RNAi binding RNA? – RNA viruses Terribilini et al (2006) RNA Wang & Brown (2006) NAR Jeong & Miyano (2006) Tras Sys Biol AMINOACYL TRANSFER RNA SYNTHETASE BIOINFORMATICS AND COMPUTATIONAL BIOLOGY Sequence Based Predictions • Dataset – – – – Protein RNA complexes from the Protein Data Bank Less than 30% identity and 3.5A or better resolution 147 Protein RNA complexes 14% interacting residues / 86% non-interacting • Classifier - Naïve Bayes ARVHNTRQQGATLAFLTLRQQASLIQ • Results: CC: 0.33 Acc: 0.86 Sp+: 0.46 Sen+: 0.36 • Server: RNABindR http://bindr.gdcb.iastate.edu/RNABindR/ Terribilini et al (2006) RNA BIOINFORMATICS AND COMPUTATIONAL BIOLOGY Using Additional Information A R V H N T R Q Q G A T L A F • PSSM A R V H N T R Q Q G A T L A F • PSI-Blast • Str Neighbor A R V H N T R Q Q G A T L A F • Combination A R V H N T R Q Q G A T L A F • Actual A R V H N T R Q Q G A T L A F BIOINFORMATICS AND COMPUTATIONAL BIOLOGY Results Method CC Acc SP+ SN+ Sequence 0.33 0.86 0.46 0.36 PSSM 0.35 0.86 0.48 0.38 PSI-Blast Method 0.35 CC 0.87 Acc SP+ SN+ 0.36 0.33 0.86 0.46 0.36 0.86 0.35 0.86 0.48 0.38 0.38 0.35 0.87 0.50 Sequence Str Neighbors 0.35 PSSM PSI-Blast 0.50 0.48 0.87 0.35 & PSI-Blast PSSM & Str Neigh PSSM0.39 0.37 0.87 0.87 0.52 0.38 0.39 PSSM & Str Neigh 0.39 0.87 0.53 0.39 0.87 0.38 0.87 0.55 0.36 0.36 0.39 0.88 0.56 0.37 Str & PSI-Blast PSSM & Str & PSI 0.38 Str & PSI-Blast PSSM & Str & PSI 0.39 0.88 0.52 0.86 0.36 PSSM & PSI-Blast Str Neighbors 0.37 0.53 0.55 0.56 0.48 0.38 0.38 0.37 BIOINFORMATICS AND COMPUTATIONAL BIOLOGY Conclusions • Evolutionary and structural information can enhance prediction over basic sequence • Combining classifiers can provide enhanced predictions over individual classifiers Acknowledgements • • • Michael Terribilini • Changhui Yan • Jae-Hyung Lee • Drena Dobbs Vasant Honavar Robert Jernigan Funding: USDA MGET, NIH, CIAG, ISU