Download A Computational Method to Identify RNA Binding Sites in Proteins

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
A Computational Method to Identify
RNA Binding Sites in Proteins
Presented by
Jeff Sander
Iowa State University
Rocky 2006
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
Biological Motivation
• Protein
RNA complexes
Which /amino
acids are
– mRNA, tRNA, rRNA
directly
responsible for
– miRNA, siRNA, RNAi
binding
RNA?
– RNA viruses
Terribilini et al (2006) RNA
Wang & Brown (2006) NAR
Jeong & Miyano (2006) Tras Sys Biol
AMINOACYL TRANSFER RNA SYNTHETASE
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
Sequence Based Predictions
• Dataset
–
–
–
–
Protein RNA complexes from the Protein Data Bank
Less than 30% identity and 3.5A or better resolution
147 Protein RNA complexes
14% interacting residues / 86% non-interacting
• Classifier - Naïve Bayes
ARVHNTRQQGATLAFLTLRQQASLIQ
• Results:
CC: 0.33
Acc: 0.86
Sp+: 0.46
Sen+: 0.36
• Server: RNABindR
http://bindr.gdcb.iastate.edu/RNABindR/
Terribilini et al (2006) RNA
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
Using Additional Information
A R V H N T R Q Q G A T L A F
• PSSM
A R V H N T R Q Q G A T L A F
• PSI-Blast
• Str Neighbor A R V H N T R Q Q G A T L A F
• Combination A R V H N T R Q Q G A T L A F
• Actual
A R V H N T R Q Q G A T L A F
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
Results
Method
CC
Acc
SP+
SN+
Sequence
0.33
0.86
0.46
0.36
PSSM
0.35
0.86
0.48
0.38
PSI-Blast
Method
0.35
CC
0.87
Acc
SP+
SN+
0.36
0.33
0.86
0.46
0.36
0.86
0.35
0.86
0.48
0.38
0.38
0.35
0.87
0.50
Sequence
Str Neighbors
0.35
PSSM
PSI-Blast
0.50
0.48
0.87
0.35
& PSI-Blast
PSSM & Str Neigh PSSM0.39
0.37
0.87
0.87
0.52
0.38
0.39
PSSM & Str Neigh
0.39
0.87
0.53
0.39
0.87
0.38
0.87
0.55
0.36
0.36
0.39
0.88
0.56
0.37
Str & PSI-Blast
PSSM & Str & PSI
0.38
Str & PSI-Blast
PSSM & Str & PSI
0.39
0.88
0.52
0.86
0.36
PSSM & PSI-Blast Str Neighbors
0.37
0.53
0.55
0.56
0.48
0.38
0.38
0.37
BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
Conclusions
• Evolutionary and structural information can enhance
prediction over basic sequence
• Combining classifiers can provide enhanced
predictions over individual classifiers
Acknowledgements
•
•
•
Michael Terribilini •
Changhui Yan
•
Jae-Hyung Lee
•
Drena Dobbs
Vasant Honavar
Robert Jernigan
Funding: USDA MGET, NIH, CIAG, ISU
Related documents