Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PyMathCampsyllabus Topic:DataMining Chapter1:Introduction 1. Motivation:Whydatamining? 2. Whatisdatamining? 3. DataMining:Onwhatkindofdata? 4. Dataminingfunctionality 5. Classificationofdataminingsystems 6. Top-10mostpopulardataminingalgorithms 7. Majorissuesindatamining Chapter2:DataPreprocessing 1. Whypreprocessthedata? 2. Descriptivedatasummarization 3. Datacleaning 4. Dataintegrationandtransformation 5. Datareduction 6. Discretizationandconcepthierarchygeneration Chapter3:DataWarehouseandOLAPTechnology:AnIntroduction 1. Whatisadatawarehouse? 2. Amulti-dimensionaldatamodel 3. Datawarehousearchitecture 4. Datawarehouseimplementation 5. Fromdatawarehousingtodatamining Chapter4:AdvancedDataCubeTechnologyandDataGeneralization 1. EfficientComputationofDataCubes 2. ExplorationandDiscoveryinMultidimensionalDatabases 3. Attribute-OrientedInduction─AnAlternativeDataGeneralizationMethod Chapter5:MiningFrequentPatterns,AssociationandCorrelations 1. Basicconceptsandaroadmap 2. Efficientandscalablefrequentitemsetminingmethods 3. Miningvariouskindsofassociationrules 4. Fromassociationminingtocorrelationanalysis 5. Constraint-basedassociationmining Chapter6:ClassificationandPrediction 1. Whatisclassification?Whatisprediction? 2. Issuesregardingclassificationandprediction 3. Classificationbydecisiontreeinduction 4. Bayesianclassification 5. Rule-basedclassification 6. Classificationbybackpropagation 7. SupportVectorMachines(SVM) 8. Associativeclassification 9. Lazylearners(orlearningfromyourneighbors) 10. Otherclassificationmethods 11. PredictionAccuracyanderrormeasures 12. Ensemblemethods 13. Modelselection Chapter7:ClusterAnalysis 1. WhatisClusterAnalysis? 2. TypesofDatainClusterAnalysis 3. ACategorizationofMajorClusteringMethods 4. PartitioningMethods 5. HierarchicalMethods 6. Density-BasedMethods 7. Grid-BasedMethods 8. Model-BasedMethods 9. ClusteringHigh-DimensionalData 10. Constraint-BasedClustering 11. OutlierAnalysis Chapter8:Miningdatastreams,time-series,andsequencedata 1. Miningdatastreams 2. Miningtime-seriesdata 3. Miningsequencepatternsintransactionaldatabases 4. Miningsequencepatternsinbiologicaldata Chapter9:Mininggraphs,socialnetworksandmulti-relationaldata 1. Graphmining 2. Socialnetworkanalysis 3. Multi-relationaldatamining Chapter10:Miningobject,spatial,multimedia,textandWebdata(Miningcomplexdata objects,Spatialandspatiotemporaldatamining,Multimediadatamining,Textminingand Webmining) 1. Miningobjectdata 2. Spatialandspatiotemporaldatamining 3. Multimediadatamining 4. Textmining 5. Webmining Chapter11:Applicationsandtrendsofdatamining(Miningbusiness&biologicaldata, VisualdataminingandDataminingandsociety:Privacy-preservingdatamining) 1. Dataminingapplications 2. Dataminingproductsandresearchprototypes 3. Additionalthemesondatamining 4. Socialimpactsofdatamining 5. Trendsindatamining