Download sets homework

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MAT 142
Homework Sets part 3 and 4:
Name:______________________
MAT 142 Summer Session 1
Homework Day #1:
Name:______________________
I. Sets
Is each set well defined or not well defined?
1. The set of cool cars?______________
2. The set of people who have climbed to the top of mount Everest?______________
Determine whether each set is finite or infinite.
3. The set of even numbers.________________
4. The set of even numbers between 5 and 1001. ________________
5. The set of even natural numbers less than 1001. _______________
6. The set of fractions between 0 and 1. _______________
Express each set in Roster Form.
7. The set of natural numbers between 17 and 32. __________________________
8. A   x x  4  12 ___________________________
9. B   x x  N and x is odd  ____________________________
Express each set in set-builder notation.
10. A  7,8,9,10,11,12 ____________________________________
11. B  4,8,12,16, 20,... ____________________________________
Write a description of each set.
12. A  1, 2,3, 4,5 __________________________________________
13. B  1, 4,9,16, 25,... ______________________________________
14. S  Monday, Tuesday,Wednesday, Thursday, Friday, Saturday, Sunday
________________________________________________________
State whether each statement is true or false.
15. e a, e, i, o, u _____________
16. e a, e, i, o, u ______________
17. h a, e, i, o, u ______________
18. 4   x x  N and x is even ______________
For problems 19 – 21 use A  1,3,5, 7 B  

C  x x  N 
19. Find n(A) _____________
20. Find n(B) _____________
21. Find n(C) _____________
For problems 22 – 24 determine if the pair of sets are equal, equivalent, both or neither.
22. A  Bob, Sue, Julie B  Julie, Bob, Sue _____________________
23. A is the set of letters in the word college B is the set of letters in the word algebra
___________________
24. A is the set of NFL teams
B is the set of Superbowl winning NFL teams
____________________
Give a written description of three sets that YOU are an element of.
25.
26.
27.
II. Subsets.
True or False
28. 3  1, 2,3, 4,5 _________________
29.
30.
31.
32.
33.
3  1, 2,3, 4,5 ________________
3 1, 2,3, 4,5 __________________
  1, 2,3, 4,5 _________________
   1, 2,3, 4,5 _________________
    ________________
34.   
35. 1, 2,3, 4,5  1, 2,3, 4,5 _________________
36. 1, 2,3, 4,5  1, 2,3, 4,5 _________________
37.   ,1, 2,3, 4,5 ____________________
38. ,1, 2,3, 4,5 _____________________
39.
  ,1, 2,3, 4,5 ___________________
Given A   x x is a sport that uses a ball  and B   football , soccer, tennis are the following
statements true or false?
40. A  B _________
41. A  B _________
42. B  A _________
43. B  A _________
44. A  B _________
45. List all of the subsets of A  a, b, c
46. WITHOUT listing the subsets, HOW MANY subsets would B  a, b, c, d , e, f  have?
SHOW how you obtained your answer!!!!
III. Venn Diagrams and Set Operations.
For questions 1 – 10 use the Venn Diagram. In questions 1 – 5 list the set of elements in roster form.
U
A
B
2
10
A  B ___________________________________
A  B ___________________________________
A  B __________________________________
A  B ___________________________________
5.  B  A    B  A  _________________________
1.
2.
3.
4.
For questions 6 – 10 indicate whether the statement is True or False.

6. A  B  x

7. B  x
x is an even prime number ____________________
x is a prime number ___________________
B  A  A _______________________
9. B   x x is a prime number _____________________
8.
10.
B  A __________________
For questions 11 – 17 use
C  1, 2,3 D  1, 2
11. C  D ____________________
12. C  D ____________________
13. C  D ____________________
14. C  D _____________________
15. D  C _____________________
16. Does C  D  D  C ? _________
17. Does
n  C  D   n  D  C  ?________

For questions 18 – 21 use U  x
x  N and x  11 O   x x  N and x is odd and x  11
E   x x  N and x is even and x  10
S   x x  N and x  7
O  E ___________________________
O  E ___________________________
20.  E  S  __________________________
18.
19.
21.
O  E  S _______________________
22. A group of 35 GCC students who spoke either Spanish or French or both were surveyed. It was found that 14
students speak French and 4 speak both French and Spanish. How many speak Spanish? (Hint: Use
n  A  B   n  A  n  B   n  A  B  )
IV. Venn Diagrams with three sets.
23. Construct a Venn Diagram illustrating the following sets.
U  a, b, c, d , e, f , g , h, i, j A  c, d , e, g , h, i B  a, c, d , g C  c, f , i, j
Given the following Venn Diagram, answer questions 24 – 30
U
B
6
3
8
4
5
7
A
11
13
C
15
A  B _______________________________
A  B _______________________________
A  B ______________________________
27.  A  C  _____________________________
24.
25.
26.
28.
A   B  C  __________________________
29.
A   B  C  __________________________
30.
 A  B    B  C  _______________________
Use the Venn Diagram from questions 24-30 and determine which are true or false. Show some work!
31.
A   B  C    A  B   A  C 
32.
A   B  C   A   B  C  
33.
A   B  C   A   B  C 
34.
 A  B   B  C   B   A  C 
Related documents