Download The Plan 1.Properties of limits 2.Defined and undefined limits 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Plan
1.Properties of limits
2.Defined and undefined limits
3.Examples
1.Given two defined limits with functions 𝑓 & 𝑔,
constants 𝑐, 𝑘 ∈ ℝ and lim → 𝑓(𝑥) = 𝐿 and
lim → 𝑔(𝑥) = 𝑀
The following properties hold:
a. lim → 𝑘 =
b.lim
→
c. lim
→
d.lim
→
e. lim
→
𝑥=
𝑓(𝑥) ± 𝑔(𝑥) =
𝑘𝑓(𝑥) =
𝑓(𝑥) ∙ 𝑔(𝑥) =
f. lim
→
( )
( )
g.lim
→
𝑓(𝑥) =
h.lim
→
𝑓(𝑥)
=
=
2.Defined and undefined limits
If 𝑐 ∈ 𝒟 and 𝑓 is continuous then
lim → 𝑓(𝑥) = 𝑓(𝑐).
lim → 𝑓(𝑥) = 𝐿
iff lim → 𝑓(𝑥) exists and lim →
and both limits are equal to 𝐿.
𝑓(𝑥) exists
lim → 𝑓(𝑥) asks how 𝑓 behaves when 𝑥
becomes very large
lim → 𝑓(𝑥) asks how 𝑓 behaves when 𝑥
becomes very large in a negative direction
Sometimes limits are undefined, that is
lim → 𝑓(𝑥) ≠ 𝐿 for all 𝐿 ∈ ℝ.
A limit can be undefined because the numbers
become very large in a negative or positive
direction, in which case we say
lim → 𝑓(𝑥) = −∞ or lim → 𝑓(𝑥) = ∞.
A limit may be undefined because the left and
right limits differ.
lim → 𝑓(𝑥) = 𝐿 ≠ 𝐿 = lim → 𝑓(𝑥).
A limit may be undefined because the left or
right limit is undefined.
A limit may not exist because the function is
discontinuous in an infinite number of places
near 𝑐 or is otherwise very strange. (We do not
have to worry about these sorts of functions in
M1510)
3.Examples:
a. Find the limits or state why they do not
exist.
i. lim → 𝑥 =
ii. lim
→
𝑥 =
iii. lim
→
|𝑥| =
iv. lim
→
v. lim
→
=
= 𝑥
vi. 𝑔(𝑥) = 0
−𝑥
vii. lim
→
=
𝑥<3
𝑥 = 3 lim 𝑔(𝑥)
→
𝑥>3
viii. lim
→
ix. lim
→
x. lim
→
xi. lim
→
xii. lim
→
xiii. lim
→
xiv. lim
→
=
| |
=
| |
=
(3𝑥 − 2𝑥 + 1) =
= =
=
b.Sketch a function that meets the given
criteria.
i. lim → 𝑓(𝑥) = 4, lim → 𝑓 (𝑥) = 2
lim → 𝑓(𝑥) = 2, 𝑓 (3) = 3, and
𝑓(−2) = 1
ii. lim → 𝑓(𝑥) = 1, lim → 𝑓(𝑥) = −1,
lim → 𝑓(𝑥) = 0, lim → 𝑓(𝑥) = 1,
𝑓(2) = 1, and 𝑓(0) is undefined.
Related documents