Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PROOF GEOMETRY GWKSHT 2.1 CHAPTER 2SECTION1 NAME_________________________________ HR_____ DATE_____/_____/_____ In each box, describe the steps of the inductive reasoning process. MAKE A CONJECTURE BY COMPLETING THE NEXT ITEM IN EACH SEQUENCE. 1. 4. ____________ 2. 1, 2, 4, 8, 16 , __________ ____________ 3. 2, -6, 18, -54, ____________ 5. 1 5 7 ,1, , ,3 ,____________ 3 3 3 MAKE A CONJECTURE BASED ON THE INFORMATION GIVEN. DRAW A FIGURE TO ILLUSTRATE YOUR CONJECTURE. 6. Lines l and m are perpendicular. 7. 3 & 4 form a linear pair 8. HIJK is a square. 9. A is a right angle. 10. BD is an angle bisector of ABC 11. 1 & 2 form a right angle 12. ABC & DBE are vertical angles. 13. M is the midpoint of AB DETERMINE WHETHER EACH CONJECTURE IS TRUE OR FALSE. GIVE A COUNTEREXAMPLE FOR ANY FALSE CONJECTURE. 14. Given: JK = KL = LM = MJ Conjecture: JKLM forms a square. 15. Given: n is a real number Conjecture: n 2 is a nonnegative number. True or False? __________ True or False? __________ Counterexample if necessary: Counterexample if necessary: 16. Given: Points W, X, Y, and Z 17. Given: 1 & 2 are complementary angles Conjecture: W, X, Y,and Z are collinear Conjecture: 1 & 2 form a right angle True or False? __________ True or False? __________ Counterexample if necessary: Counterexample if necessary: 18. Given: Points A, B and C are collinear 19. Given: ABC & DEF are supplementary Conjecture: AB + BC = AC Conjecture: ABC & DEF form a linear pair True or False? __________ True or False? __________ Counterexample if necessary: Counterexample if necessary: 20. Given: DE EF 21. Given: 1 & 2 are adjacent angles Conjecture: DEF is a right angle Conjecture: 1 & 2 form a linear pair True or False? __________ True or False? __________ Counterexample if necessary: Counterexample if necessary: