Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
DELTA-CONNECTED LOAD Load phase currents V I AB AB | I | Z I BC 30 Z VBC | I | 120 Z VCA | I | 120 Z Line currents I CA Z | Z L | Z I aA I AB I CA I bB I BC I AB Method 1: Solve directly Van | V p | 0 Vbn | V p | 120 Vcn | V p | 120 Positive sequence phase voltages Vab 3 | V p | 30 Vbc 3 | V p | 90 Vca 3 | V p | 210 | I line | 3 | I | line 30 Line-phase current relationship I cC I CA I BC Method 2: We can also convert the delta connected load into a Y connected one. The same formulas derived for resistive circuits are applicable to impedances Z 3 |V | / 3 Van | I aA | AB I aA | I aA | L | Z | / 3 ZY L Z Balanced case ZY | V | 3 | V phase | phase 30 Line - phase voltage relationsh ip | I line | 3 | I | line 30 Line-phase current relationship LEARNING EXTENSION I aA 1240. Find the phase currents I AB 6.9370 I BC 6.93 50 I CA 6.93190 REVIEW OF Rab R2 || ( R1 R3 ) Y Transformations Y Rab Ra Rb Y Ra R1 Rb R1 Rb R2 Rb R1 R1 R2 R R 3 2 Ra Rc R1 Rc R2 ( R1 R3 ) Ra R1 R2 R3 Rb R3 Ra Rb REPLACE IN THE THIRD AND SOLVE FOR R1 R1 R2 R3 R2 R3 Rb R1 R2 R3 Ra Rb Rb Rc Rc Ra R3 ( R1 R2 ) R 1 Rb Rc Rb R R 3 1 R1 R2 R3 Rc R1 R2 R3 R R Rb Rc Rc Ra R2 a b Rc Y R1 ( R2 R3 ) Rc Ra R R Rb Rc Rc Ra R1 R2 R3 R3 a b Ra SUBTRACT THE FIRST TWO THEN ADD TO THE THIRD TO GET Ra Y R R1 R2 R3 RY R 3 LEARNING EXAMPLE Delta-connected load consists of 10-Ohm resistance in series with 20-mH inductance. Source is Y-connected, abc sequence, 120-V rms, 60Hz. Determine all line and phase currents Van 12030(V )rms Zinductance 2 60 0.020 7.54 Z 10 j 7.54 12.5237.02 ZY 4.1737.02 VAB 120 360 16.6022.98( A)rms Z 10 j 7.54 16.60 97.02( A)rms I AB I BC | V | 3 | V phase | I CA 16.60142.98( A)rms phase 30 IaA 28.75 7.02( A)rms Line - phase voltage relationsh ip I bB 28.75 127.02( A)rms | I line | 3 | I | line 30 Line-phase current relationship I cC 28.75112.98( A)rms Alternatively, determine first the line currents and then the delta currents POWER RELATIONSHIPS | V | 3 | V phase | - Impedance angle phase 30 Line - phase voltage relationsh ip Vline STotal 3 V phase I *phase * STotal 3Vline I line | I line | 3 | I | line 30 Line-phase current relationship Stotal 3Vline I * * STotal 3Vline I line f Power factor angle I line Ptotal 3 |Vline || I line | cos f Qtotal 3 |Vline || I line | sin f LEARNING EXAMPLE | Vline | 208(V )rms Ptotal 1200W power factor angle 20 lagging Vline Determine the magnitude of the line currents and the value of load impedance per phase in the delta - Impedance angle Ptotal 3 |Vline || I line | cos f Qtotal 3 |Vline || I line | sin f Z 101.4620 Vline Ptotal | Vline || I line | cos f | I line | 3.54( A)rms 3 3 | I line | 3 | I | line 30 f Power factor angle | Vline | | Z | 101.46 | I | 2.05( A)rms | I | Line-phase current relationship I line LEARNING EXAMPLE For an abc sequence, balanced Y - Y three phase circuit source | V phase | 120(V )rms , Zline 1 j1, Z phase 20 j10 Determine real and reactive power per phase at the load and total real, reactive and complex power at the source VAN IaA (20 j10) IaA 22.3626.57 VAN 113.15 1.08(V )rms * S phase VAN I aA 113.15 1.08 5.0627.65 S phase 572.5426.57 512 j 256.09(VA)rms 1200 Chosen as reference * Ssource phase Van I aA 1200 5.0627.65 Van 1200 Vbn 120 120 Because circuit is balanced Van 120120 data on any one phase is sufficient Abc sequence Van 1200 21 j11 23.7127.65 5.06 27.65( A)rms I aA Ssource phase 607.227.65 537.86 j 281.78VA Ptotal source 3 537.86(W ) Qtotal source 3 281.78 (VA) Stotal source Ptotal source Qtotal source 1613.6 j845.2(VA) | Stotal source | 1821.6(VA) LEARNING EXAMPLE Determine the line currents and the combined power factor Circuit is balanced Load 1 : 24kW at pf 0.6 lagging Load 2 : 10kW at pf 1 Vline 208(V )rms Load 3 : 12kVA at pf 0.8 leading inductive S P jQ P | S | cos f P1 24kW | S1 | 40kVA pf 0.6 lagging | Q1 | | S1 |2 | P1 |2 32kVA Q | S | sin f pf cos f Stotal S1 S2 S3 f lagging inductive S1 24 j32 kVA capacitive Load 2 STOTAL S1 S2 S3 43.6 j 24.8kVA 50.16029.63kVA P2 10kW S2 10 j 0 kVA Ptotal 3 |Vline || I line | cos f | Stotal | 3 | Vline | | I line | pf 1 Q 3 | V || I | sin total line line f Load 3 f 29.63 | S3 | 12kVA P3 9.6kW pf 0.8 | Q3 | 7.2kVA leading pf capacitive S3 9.6 j 7.2kVA pf 0.869 lagging | I line | 139.23( A)rms Continued ... LEARNING EXAMPLE continued …. If the line impedances are Z line 0.05 j 0.02 determine line voltages and power factor at the source inductive f capacitive | I line | 139.23( A)rms * Sline 3 ( Z line I line ) I line 3 Z line | I line | 2 Sline 2908 j1163(VA) Sload total 43.6 j 24.8kVA 50.16029.63kVA Ssource total 46.508 j 25.963 53.26429.17kVA | Stotal | 3 | Vline | | I line | f 29.17 Vline 53,264 220.87(V )rms 3 139.13 pf cos f cos(29.17) 0.873 lagging A Y -Y balanced three-phase circuit has a line voltage of 208-Vrms. The total real power absorbed by the load is 12kW at pf=0.8 lagging. Determine the per-phase impedance of the load LEARNING EXTENSION | V | 3 | V phase | Impedance angle phase 30 Line - phase voltage relationsh ip Vline STotal 3 V phase I *phase S P jQ P | S | cos f 208 | V phase | 120(V )rms 3 Stotal I line Q | S | sin f pf cos f * V phase | V phase |2 3 3V phase * Z Z phase phase f Power factor angle | Z phase| 3 | V phase |2 | Stotal | 2.88 pf 0.8 cos f f 36.87 | Stotal | Ptotal 15kVA pf Z pahse 2.8836.87 LEARNING EXTENSION Determine real, reactive and complex power at both load and source Source is Delta connected. Convert to equivalent Y Analyze one phase j 0.1 10 * Sload 3 V AN I aA * S source 3 Van I aA 3 | Van |2 * Z total phase 10 j 4 120 30 10.1 j 4.1 10.77 | 120 118.57(V )rms 10.90 VAN | VAN | V AN |2 3 | 118.57 |2 3 | 118.57 |2 (10 j 4) 3 * 10 j 4 Z phase 102 42 3 | 120 |2 3 | 120 |2 (10.1 j 4.1) 10.1 j 4.1 (10.1) 2 (4.1) 2 Sload 3 (1,212.0 j 484.8) S source 3 (1224.1 j 496) LEARNING EXTENSION A 480-V rms line feeds two balanced 3-phase loads. The loads are rated Load 1: 5kVA at 0.8 pf lagging Load 2: 10kVA at 0.9 pf lagging. Determine the magnitude of the line current from the 408-V rms source | S1 | 5kVA S P jQ P | S | cos f P P1 4kW 0.8 Q1 | S1 |2 P12 3.0kVA Q | S | sin f pf lagging S1 4 j3kVA | S2 | 10kVA Q2 | S2 | 2 P P 9kW 0.9 P22 4.36kVA S2 9 j 4.36kVA Stotal 13 j 7.36kVA | I lineq | pf cos f Stotal S1 S2 Ptotal 3 |Vline || I line | cos f Qtotal 3 |Vline || I line | sin f | S total | 3 | Vline || I line | | Stotal | 14,939 21.14( A)rms 3 | Vline | 706.68