Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
DON BOSCO SCHOOL, ALAKNANDA : CLASS XI - Assignment CHAPTER 3 β TRIGONOMETRIC FUNCTIONS Answer the following: 1. Find the value of cos(2π+π)πππ ππ(2πβπ)tanβ‘( 3π +π) 2 9π sec( 2 +π) cos(4πβπ)cotβ‘(3πβπ) 2. Evaluate cos 15o βsin 15o 3. If cosΞ± = 13 14 1 Ο 7 3 β‘andβ‘cosΞ² = where Ξ± and Ξ² are acute angles, show that Ξ± β Ξ² = 4. The circular measures of two angles of a triangle are ½ and 1/3 , find the third angle in [ ans : 132o 16β 22ββ ] English system 5. A circular wire of radius 3 cm is cut and bent so as to lie along a circle of radius 48cm. Find the angle subtended by the wire at the centre of the circle [ans : 22.5o] [ ans: 100o] 6. Find the angle between the hands of a clock at 7:20 P.M. 7. If tan π₯ =β‘ π πβ1 πππ tan π¦ =β‘ 1 2πβ1 , ππππ£πβ‘π‘βππ‘β‘π₯ β π¦ = π 4 8. If sec x + tan x = 4 , find sin x and cos x. Also find the quadrant in which x lies. [ ans : sin x = 15/17 , cos x == 8/17 , First ] 9. If π πππΌ + sin π½ = π, πππ πΌ + cos π½ = π, ππππ£πβ‘π‘βππ‘ β‘β‘β‘sin(πΌ + π½) = πππ cos(πΌ + π½) = π2 βπ2 π2 βπ2 10. If tan A + cot A = 2, then find tan100A + cot100A 11. Prove that cos2xcos3xβcos2xcos7x+cosxβ‘cos10x sin4xsin3xβsin2xsin5x+sin4xsin7x 12. Prove that tan 13. Prove that cos π 20 2π 7 tan 3π 20 +cos tan 4π 7 5π 20 tan +cos 7π 20 6π 7 tan =β 1 2 9π 20 [ans : 2 ] = πππ‘6π₯πππ‘5π₯ =1 2ππ π2 +π2β‘ 14. Prove that sin 10 o sin 50o sin 70 o = 1 8 15. Prove that cos10o cos 30o cos 50o cos 70 o = 16.Prove that sinβ‘(π΅βπΆ) πππ π΅πππ πΆ 17.If cosx +cosy = 18.Prove that 19.Prove that + 1 2 sinβ‘(πΆβπ΄) πππ πΆπππ π΄ + sinβ‘(π΄βπ΅) =0 πππ π΄πππ π΅ and sinx+siny = 1 4 3 16 π₯+π¦ ππππ£πβ‘π‘βππ‘ tan( 2 1 ) =β‘2 β2 + β2 + β2 + 2πππ 8π₯ = 2πππ π₯ sinx+sin2x 1+cosx+cos2x = tanx 20.Prove that cos 5x = 16cos 5 x -20 cos 3 x +5cosx 21.Solve the equation cosx + sin x = cos2x + sin2x 22.Find all values of A between 0o and 720o which satisfy the equation 2 cos2A -5cosA + 2 = 0 [ans : 60 o, 300 o, 420 o, 660 o] π₯ π₯ β3 β‘2 2 5 23.Find the value of sin2x, sin , cos2x, cos if, cos x = 24.Find the principal and general solution of (a) 2sinx + 1 = 0 (b) sin x + cos x=0 25.Find the general solutions for the following a) sin 2x + sin4x + sin6x = 0 b) 2cos2x + 3sinx = 0 c) cos x + cos3x = 2 - 4sin2x d) cos x β sin x = 1 β2 e) β2 sec x + tan x = 1 * * * , x lies in third quadrant.