Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 5 Visuals Fig. 5-2a HO 1 2 3 H Short polymer HO Unlinked monomer Dehydration removes a water molecule, forming a new bond HO 1 2 H 3 H2O 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer Fig. 5-2b HO 1 2 3 4 Hydrolysis adds a water molecule, breaking a bond HO 1 2 3 (b) Hydrolysis of a polymer H H H2O HO H Fig. 5-5 1–4 glycosidic linkage Glucose Glucose Maltose (a) Dehydration reaction in the synthesis of maltose 1–2 glycosidic linkage Glucose Fructose (b) Dehydration reaction in the synthesis of sucrose Sucrose • http://www.youtube.com/watch?v=b7TdWLN hMtM Cellulose Fig. 5-10 Chitin (a) The structure of the chitin monomer. (b) Chitin forms the exoskeleton of arthropods. (c) Chitin is used to make a strong and flexible surgical thread. Fig. 5-11a Fatty acid (palmitic acid) Glycerol (a) Dehydration reaction in the synthesis of a fat Fig. 5-11b Ester linkage (b) Fat molecule (triacylglycerol) Fig. 5-12 Structural formula of a saturated fat molecule Stearic acid, a saturated fatty acid (a) Saturated fat Structural formula of an unsaturated fat molecule Oleic acid, an unsaturated fatty acid (b) Unsaturated fat cis double bond causes bending Hydrophobic tails Hydrophilic head Fig. 5-13 (a) Structural formula Choline Phosphate Glycerol Fatty acids Hydrophilic head Hydrophobic tails (b) Space-filling model (c) Phospholipid symbol Fig. 5-14 Hydrophilic head Hydrophobic tail WATER WATER Table 5-1 Fig. 5-16 Substrate (sucrose) Glucose OH Fructose HO Enzyme (sucrase) H2O Fig. 5-UN1 carbon Amino group Carboxyl group Fig. 5-17 Nonpolar Glycine (Gly or G) Valine (Val or V) Alanine (Ala or A) Methionine (Met or M) Leucine (Leu or L) Trypotphan (Trp or W) Phenylalanine (Phe or F) Isoleucine (Ile or I) Proline (Pro or P) Polar Serine (Ser or S) Threonine (Thr or T) Cysteine (Cys or C) Tyrosine (Tyr or Y) Asparagine Glutamine (Asn or N) (Gln or Q) Electrically charged Acidic Aspartic acid Glutamic acid (Glu or E) (Asp or D) Basic Lysine (Lys or K) Arginine (Arg or R) Histidine (His or H) Fig. 5-18 Peptide bond (a) Side chains Peptide bond Backbone (b) Amino end (N-terminus) Carboxyl end (C-terminus) • The sequence of amino acids determines a protein’s threedimensional structure • A protein’s structure determines its function Fig. 5-21a Primary Structure 1 +H 5 3N Amino end 10 Amino acid subunits 15 20 25 Fig. 5-21c Secondary Structure pleated sheet Examples of amino acid subunits helix Fig. 5-21f Hydrophobic interactions and van der Waals interactions Polypeptide backbone Hydrogen bond Disulfide bridge Ionic bond Fig. 5-21g Polypeptide chain Chains Iron Heme Chains Hemoglobin Collagen Fig. 5-26-1 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM Fig. 5-26-2 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Movement of mRNA into cytoplasm via nuclear pore Fig. 5-26-3 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Movement of mRNA into cytoplasm via nuclear pore Ribosome 3 Synthesis of protein Polypeptide Amino acids Fig. 5-27 5 end Nitrogenous bases Pyrimidines 5 C 3 C Nucleoside Nitrogenous base Cytosine (C) Thymine (T, in DNA) Uracil (U, in RNA) Purines Phosphate group 5 C Sugar (pentose) Adenine (A) Guanine (G) (b) Nucleotide 3 C Sugars 3 end (a) Polynucleotide, or nucleic acid Deoxyribose (in DNA) Ribose (in RNA) (c) Nucleoside components: sugars Fig. 5-28 5' end 3' end Sugar-phosphate backbones Base pair (joined by hydrogen bonding) Old strands Nucleotide about to be added to a new strand 3' end 5' end New strands 5' end 3' end 5' end 3' end