Download Most probable occupation number

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Physics 452
Quantum mechanics II
Winter 2012
Karine Chesnel
Phys 452
Homework
Thursday Jan 12:
assignment #2
5.28, 5.30, 5.31
Phys 452
Quantum statistical mechanics
Most probable occupation number:
• Distinguishable particle
• Identical fermions
• Identical bosons
Nn  dne
Nn 
Nn 
   En 
dn
   En 
e
e
1
dn  1
   En 
1
Phys 452
Quantum statistical mechanics
Most probable occupation number:

N n ( ,  )
N
n 0
n
N

N E
n 0
 ,  
n
n
E
To be determined by E, N
Or by T and characteristic
energy of the system
Phys 452
Quantum statistical mechanics
Calculation of  and :
Case of ideal gas
One spherical shell
kz
kF
“degeneracy”
Fermi
surface
kx
density of states
 d shell
dk
ky
Vk 2

dk
2
2

N
Bravais
k-space


Nk dk
k 0

Volume in k-space
of each individual state
Vunit 

3
V
E

k 0
N k Ek d k
Phys 452
Quantum statistical mechanics
Calculation of  and :
Case of ideal gas : distinguishable particles

N

 m
N  eV 
 2
Nk dk
k 0
E

E


2 

3/2
3
m
 
E
Ve 
2
 2
N k Ek d k
k 0
We identify

1
k BT
and

2 

3/2
 (T )  kBT
3N
2
Phys 452
Quantum statistical mechanics
Meaning of  and :
Case of ideal gas : distinguishable particles
Using
1

k BT
and
 (T )  kBT
3
Etot  Nk BT
2
  N  3  2 2
 (T )   k BT  k BT ln    ln 
  V  2  mk BT



Phys 452
Quantum statistical mechanics
Most probable occupation number
or density of occupation:
  E    / k BT
Maxwell-Boltzmann
n
E

e


• Distinguishable particle
distribution
• Identical fermions
nE 
• Identical bosons
nE 
1
 E    / k BT
e
1
1
e E  / kBT  1
Fermi- Dirac
distribution
Bose-Einstein
distribution
Phys 452
Quiz 3a
What is the maximum possible value
for the density of occupation in case of fermions
at a given temperature T?
A.



B. 1/ e  1
C. 1
D. 0
E. 1/2
Phys 452
Quantum statistical mechanics
Fermi-Dirac distribution:
nE 
1
 E    / k BT
e
1
 (0)  EF
nE 
1
e E  EF / kBT  1
T 0
n 1 if E    0
n  0 if
E    0
Phys 452
Quantum statistical mechanics
Ideal gas of fermions or bosons

N
 n(k )d

V
N 2 
2 0 e 
k
k 0

E
 n(k ) E (k )d

k /2 m    / kBT

2 2

2
V
E 2
2 2m 0 e 
k
k 0
Pb 5.28: Fermions at T=0
Pb 5.29: Bosons
k2
dk
1
k4

k /2 m    / k BT

2 2
dk
1
 (T )
Etot (T )
Relationships between EF, kF and Etot, N
 (T )  0
Predicted in 1924-25
First measured on Rb atoms 1995
First measured on Photons 2010
Bose-Einstein condensation
T  Tc
 0
And all particles condense into ground state
Phys 452
Quiz 3b
What is the maximum possible value
for the density of occupation in case of bosons?
A.



B. 1/ e  1
C. 1
D. 0
E. 1/2
Phys 452
Quantum statistical mechanics
Black-body spectrum
Photons
• Boson: S=1; m=+/-1
• Energy- wavelength:
E 
k  2 / 
• Non-conservation of the
number of photons ( =0)
 ( ) 
 2 c3  e
3
 / k BT
Density of energy

1
Phys 452
Quantum statistical mechanics
Black-body spectrum
Wien displacement law
Bosons
at equilibrium T
Pb 5.30: Wien law
Analogy: lava emits light when hot !
Pb 5.31: Stefan-Boltzmann formula
Phys 452
Quiz 3c
We can find that for the blackbody emission, the relationship
between the optimal wavelength and the temperature is
max
2.9 103

m.K
T
What should be the temperature of the blackbody
to emit principally around 600nm (orange) ?
A. around 2000K
B. around 5000K
C. around 8000K
D. around 10000K
E. around 20000K
Related documents