Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Silicon Detectors Stephanie Majewski Stanford University Semiconductor Refresher S. Majewski Si bandgap energy Eg = 1.12 eV kBT = 0.026 eV @ 300K 2 Semiconductor Refresher Si bandgap energy Eg = 1.12 eV kBT = 0.026 eV @ 300K Doping: n-type dopant adds electrons to conduction band (e.g. P, As) S. Majewski 3 Semiconductor Refresher Si bandgap energy Eg = 1.12 eV kBT = 0.026 eV @ 300K Doping: n-type dopant adds electrons to conduction band (e.g. P, As) p-type dopant adds holes to valence band (e.g. B) S. Majewski 4 Reverse-Biased Diodes sensitive detector region p-n junction Hamamatsu PIN Diode depletion region larger depletion region p-i-n junction (i = intrinsic) S. Majewski 5 Interaction of Charged Particles A high-energy particle produces uniform e-h density along its path The bias voltage attracts the electrons/holes to either contact S. Majewski 6 Ionization Energy Most probable energy loss Less material (1 m): Mean energy loss More material (100 m): Landau distribution with high-energy tail Silicon: S. Majewski E dominated by counting statistics Mean ionization energy = 3.6 eV 7 Energy Loss (dE/dx) BAD 1154 d p t Shape is Bethe-Bloch (see M. Spitznagel’s drift chamber talk) dE/dx = # e-h pairs 3.6 eV / (300 m tan dip) Limited ability to distinguish particles S. Majewski 8 Advantages of Silicon Low ionization energy: 3.6 eV (e-h creation) Long mean free path (~100 nm) Large signals High carrier mobility High charge collection efficiency Large energy loss / distance traveled (3.8 MeV/cm for a minimum ionizing particle) Compare to gas ~30 eV Many carriers / event (v E ) at room temp, even w/ doping Rapid charge collection (~10ns) Detector/electronics integration S. Majewski Easy to fabricate 9 Silicon Wafer Fabrication p n i S. Majewski 10 Silicon Detector Geometries Strip Detectors Hybrid Pixel Detectors (at ATLAS, CMS) Squares instead of strips; integrated electronics Drift Detectors (used in Star at RHIC) BaBar, Belle, CDF, D0 Electrons move through the Si bulk to an anode strip at the end CCDs (used for SNAP, SLD) 3-D Silicon Detectors S. Majewski Proposed in ’95 by S. Parker at U. Hawaii Possible LHC detector upgrade 11 Strip Detector Geometry “Strip Pitch” (~50m) is the distance between strips, whether they are connected to the electronics or not “Readout Pitch” includes floating strips Resolution ~ readout pitch / 12 Readout Pitch Aluminum Strip Pitch Silicon dioxide p+ Implant S. Majewski n- Bulk 12 The BaBar Silicon Vertex Tracker Silicon Wafers Edge guard ring Polysilicon bias resistor Bias ring P-stop 55 m n+ Implant p+ Implant Al 50 m Polysilicon bias resistor p+ strip side S. Majewski TOP VIEW Edge guard ring n+ strip side 14 Si Sensor Schematic Bias Voltage ~ 40 V Leakage Current ~ 10 A AC Coupling SIDE VIEW S. Majewski 15 Si Sensor Schematic +2 V Pre-Amp Bias Voltage ~ 40 V Leakage Current ~ 10 A AC Coupling +40 V S. Majewski Pre-Amp +42 V +40 V 16 Readout Strips are AC coupled to preamplifiers Separates signal current from bias current Guard rings to reduce noise and measure bulk bias current Charge sharing between strips Analog readout of strips gives better resolution Convert pulse height (charge) into long pulse in time, then measure time over threshold (TOT) S. Majewski 17 Readout Electronics AToM chip Radiation hard 128 channels 1-2 strips/channel Minimum Ionizing Particle: 3.8fC avg 7.5 counts 1-2 counts = noise S. Majewski Time Over Threshold Injected Charge (fC) 1 MIP 18 SVT Modules Z Side ATOM chip Side Si Wafers S. Majewski Carbon/Kevlar Fiber Support Ribs 19 Position Resolution Analog readout allows better resolution than pitch / 12 S. Majewski 20 How Many Layers? Define a Helix Inner 3 layers 4 points confirm a helix in tracking 5 layers needed to compensate for gaps and dead modules angle/impact parameter redundancy Outer 2 layers pattern recognition low p tracking S. Majewski T BaBar TDR Track Finding Efficiency 5 layers % % % % 4 layers Number of Hits Found 21 SVT Data Transmission •HDI: High Density Interconnect. Mounting fixture and cooling for readout ICs. •Kapton Tail: Flexible multi-layer circuit. Power, clock, commands, and data. Power Supplies •Matching Card: Connects dissimilar cables. Impedance matching. •HDI Link: Reference signals to HDI digital common. •DAQ Link: Multiplex control, demultiplex data. Electrical -- optical conversion. Front Cables Si Wafers Back Cables MUX Power HDI Link Matching Card HDI Kapton Tail DAQ Link Fiber Optic to DAQ S. Majewski 22 Radiation Damage Acute damage pinhole – short in AC coupling capacitor p-stop short – short between p-stop and metal contact (DC) Bulk damage radiation displaces Si atoms & creates defects eventual type inversion in bulk (n-type to p-type) can see as change in voltage needed to fully deplete S. Majewski 23 Radiation Damage Consequences of Defects Recombination/generation centers increased leakage current Trapping centers introduce time delay reduced signal Charge density changes need increased bias voltage S. Majewski 24 Radiation Protection Silicon is not radiation hard BaBar SVT monitored by PIN diodes and diamond sensors http://www.slac.stanford.edu/BFROOT/www/Detector/SVT/Operations/SVTRAD/ briefIntro.html See Adam’s talk next week! S. Majewski 25 The BaBar SVT Thin wafers (300 m) to limit multiple scattering 5 Layers 0.94 m2 of Si ~150 000 readout channels S. Majewski 26 Belle Silicon Vertex Detector SVD 1 3 Layers S. Majewski SVD 2 4 Layers 27 ATLAS Semiconductor Tracker & Pixel Detectors Semiconductor Tracker (SCT) S. Majewski Pixel Detectors 28 3-D Silicon Detector S. Majewski Brunel Univ. (UK), Stanford, and Hawaii Possible LHC detector upgrade http://www.pparc.ac.uk/frontiers/archive/update.asp?id=16U3&style=update 29 The Rise of the Silicon Detector S. Majewski 30 References General Silicon Detectors: Lutz, G. Semiconductor Radiation Detectors: Device Physics. (Springer Verlag, Berlin, 1999). Spieler, H. Lectures on Detector Techniques. 1998. http://www-physics.lbl.gov/~spieler/SLAC_Lectures/index.html Sadrozinski, H. “Applications of Si Detectors”, presented at IEEE 2000. http://scipp.ucsc.edu/~hartmut/IEEE2000_embed.pdf BaBar Silicon Vertex Tracker: SVT Facts and Figures. http://www.slac.stanford.edu/BFROOT/www/Detector/SVT/ Factoids.html TDR http://www.slac.stanford.edu/pubs/slacreports/slac-r-457.html31 S. Majewski