Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
EKT 104 ANALOGUE ELECTRONIC CIRCUITS Multistage Amplifiers Syllabus Cascade connection, cascode connection, Darlington connection, transformer coupling. 1 CASCADED AMPLIFIERS PART I BJT AMPLIFIERS ACKNOLEDGEMENT The materials presented in these notes were partly taken from the original notes “MULSTISTAGE AMPLIFIERS” by ENCIK SOHIFUL ANUAR BIN ZAINOL MURAD, School of Microelectronic 2 Many applications cannot be handled with singletransistor amplifiers in order to meet the specification of a given amplification factor, input resistance and output resistance As a solution – transistor amplifier circuits can be connected in series or cascaded amplifiers This can be done either to increase the overall small-signal voltage gain or provide an overall voltage gain greater than 1 with a very low output resistance 3 (i) Cascade /RC coupling . . R C1 RB . R C2 . vo Q2 C vi . Q1 4 (ii) Cascode . R1 . RL . vo Q2 R2 vi . Q1 R3 5 (iii) Darlington/Direct coupling . . R1 R2 . vo Q2 vi . Q1 6 (iv) Transformer coupling . T vo Q2 R1 vi . Q1 7 Cascade connection RC coupling - Coupling capacitor couples the signal from one stage to another stage and block dc voltage from one stage to another stage. - The signal developed across the collector resistor of each stage is coupled into the base of the next stage - The overall gain = product of the individual gain 8 i) Cascade connection Example 1 V CC R1 15 kW RC1 2.2 kW b 1 = b 2 = 200 +20 V ro1 = ro2 = R3 15 kW RC2 2.2 kW Ro Ri R2 4.7 kW RE1 1 kW R4 4.7 kW RE2 1 kW Draw the AC equivalent circuit and calculate Av, Ri and Ro. 9 Example 1 – Solution V CC +20 V DC analysis The circuit under DC condition (stage 1 and stage 2 are identical) R1 15 kW RC1 2.2 kW Q1 R2 4.7 kW RE1 1 kW 10 Example 1 – Solution (cont’d) V CC Applying Thevenin’s theorem, the circuit becomes; 4.7 VBB = VCC = 4.7 V (4.7 + 15) 15(4.7) RBB = 15 4.7 = = 3.57 KW (15 + 4.7) I BQ1 = I BQ 2 = 19.89 μA RC1 2.2 kW V BB 4.77 V 3.58 kW g m1 = g m 2 = 0.153 A/V (1+b )I B RE1 1 kW I CQ1 = I CQ 2 = 3.979 mA r 1 = r 2 = 1.307 kW bIB R BB IB 20 V VT r = I BQ gm = I CQ VT 11 Example 1 – Solution (cont’d) AC analysis The small-signal equivalent circuit (mid-band); Vi R B1 B1 r1 B2 C1 + v1 - R C1 g m 1v 1 R B2 r2 + v2 - E1 RB1 = R1 // R2 Vo C2 RC2 g m 2v 2 E2 RB 2 = R3 // R4 12 Example 1 – Solution (cont’d) Vo = g m 2v 2 RC 2 A2 = Vo = g m 2 RC 2 v 2 v 2 = g m1v 1 (RC1 // RB 2 // r 2 ) = g m1Vi (RC1 // RB 2 // r 2 ) v 1 = Vi v 2 A1 = = g m1 (RC1 // RB 2 // r 2 ) Vi 13 Example 1 – Solution (cont’d) The small-signal voltage gain; A = A1 A2 = g m1 g m 2 RC 2 (RC1 // RB 2 // r 2 ) Substituting values; RB1 = RB 2 = R3 // R4 = 15 // 4.7 = 3.579 kW RC1 // RB 2 // r 2 = 2.2 // 3.579 // 1.307 = 667 W A = 0.153 0.153 2200 667 = 34350 V/V 14 Example 1 – Solution (cont’d) The input resistance; Rin = RB1 // r 1 = 3.579 // 1.307 = 0.957 kW The output resistance; Ro = RC 2 = 2.2 kW 15 Direct couple (DC) The first stage is directly coupled to the next stage without going through a coupling capacitor A common-emitter stage driving another commonemitter stage 16 Direct couple (DC) The biasing network must be be suitably designed otherwise the dc bias of one stage will upset the bias voltage of the other 17 Example 2 Perform a dc analysis and hence calculate the voltage gain Av where; vo Av = vs Assume b1 = 170, b2 = 150 and VBE(ON) = 0.7 V. 18 Direct couple (DC) A common-emitter driving an emitter-follower. 19 Example 2 - Solution V CC DC analysis +5 V I1 RBB RE2 R1 R2 = = 33.3 kW R1 + R2 RC1 5 kW IB2 VE2 VC1 IB1 R BB V BB VBB = VEE + (VCC = 1.667 R2 VEE ) R1 + R2 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 20 Example 2 – Solution (cont’d) V CC The base-emitter loop of Q1 I1 RE2 RC1 VBB + RBB I B1 + VBE1 + RE1 I E1 + VEE = 0 VE2 VC1 IB1 V BB = VBB VEE VBE1 5 kW IB2 Rearranging; RBB I B1 + (b1 + 1)RE1I B1 +5 V R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 21 Example 2 – Solution (cont’d) V CC Substituting values; +5 V I1 RE2 33.3 103 I B1 RC1 + (170 + 1)2 103 I B1 = 1.667 + 5 0.7 I B1 = 7 A 5 kW IB2 VE2 VC1 IB1 V BB R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW I C1 = b1I B1 = 1.19 mA V EE -5 V 22 Example 2 – Solution (cont’d) V CC I E1 = (b1 + 1)I B1 = 1.197 mA I1 RE2 RC1 VB1 = VBB RBB I B1 = 1.9 V VE1 = RE1I E1 + VEE IB1 = 2.606 V V BB +5 V 5 kW IB2 VE2 VC1 R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 23 Example 2 – Solution (cont’d) V CC For the RC1 – collector of Q1 – base of Q2 – RE2 loop; RE 2 I E 2 + VEB2 = RC1I1 I1 RE2 RC1 5 kW IB2 VE2 VC1 IB1 R BB V BB I E 2 = (b 2 + 1)I B 2 2 kW IE2 Q2 IC1 VB1 I 1 = I C1 I B 2 and +5 V Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V (b 2 + 1)RE 2 I B 2 + VEB2 = RC1 ( I C1 I B 2 ) 24 Example 2 – Solution (cont’d) V CC +5 V Substituting values; I1 (150 + 1)2 103 I B 2 + 0.7 ( 3 RE2 = 5 10 1.19 10 I B 2 3 ) RC1 5 kW IB2 VE2 VC1 I B 2 = 17 μA I C 2 = b 2 I B 2 = 2.565 mA IB1 V BB R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 25 Example 2 – Solution (cont’d) V CC I E 2 = (b2 + 1)I B 2 = 2.582 mA I1 RE2 RC1 I1 = I C1 I B 2 = 1.19 0.017 = 1.173 mA VC1 = VCC RC1 I1 = 5 5 1.173 = 0.865 V +5 V 5 kW IB2 VE2 VC1 IB1 V BB R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 26 Example 2 – Solution (cont’d) V CC VE 2 = VCC RE 2 I E 2 +5 V I1 = 5 2 2.582 = 0.164 V RE2 RC1 5 kW IB2 VE2 VC1 VC 2 = RC 2 I C 2 + VEE = 1.5 2.565 5 = 1.175 V IB1 V BB R BB 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 27 Example 2 – Solution (cont’d) AC analysis V 2 A1 Vs Vo A2 V 2 28 Example 2 – Solution (cont’d) V 2 = g m1V 1 (RC1 // r 2 ) Rin V 1 = Vs RS + Rin V 2 = g m1 (RC1 // r 2 ) V 1 V 1 Rin = Vs RS + Rin 29 Example 2 – Solution (cont’d) Rin V 2 V 2 V 1 A1 = = = g m1 (RC1 // r 2 ) Vs V 1 Vs RS + Rin Vo = g m 2V 2 (RC 2 // RL ) Vo A2 = = g m 2 (RC 2 // RL ) V 2 30 Example 2 – Solution (cont’d) Rin g m 2 (RC 2 // RL ) A = A1 A2 = g m1 (RC1 // r 2 ) RS + Rin Rin (RC1 // r 2 )(RC 2 // RL ) A = g m1 g m 2 RS + Rin 31 Example 2 – Solution (cont’d) Substituting values; I C1 1.19 g m1 = = = 45.77 mA/V VT 26 VT 26 r 1 = b1 = 170 = 3714 W I C1 1.19 32 Example 2 – Solution (cont’d) gm2 I C 2 2.565 = = = 98.65 mA/V VT 26 VT 26 r 2 = b 2 = 150 = 1520 W IC 2 2.565 Rin = R1 // R2 // r 1 = 100 // 50 // 3.714 = 3.342 kW 33 Example 2 – Solution (cont’d) Rin (RC1 // r 2 )(RC 2 // RL ) A = g m1 g m 2 RS + Rin 3.342 = 45.77 98.65 (5 // 1.52)(1.5 // 5) 0.5 + 3.342 A = 5286 V/V 34 Example 3 Determine; (a) Q-points (b) Av; (c) Ri; (d) Ro. The parameters for Q1 and Q2 are; b = 125; VBE(on) = 0.7 V; ro = . 35 Example 3 – Solution DC analysis The circuit under DC condition: Applying Thevenin’s theorem at the input; RBB = R1 // R2 VBB 70 6 = = 5.53 kW 70 + 6 6 = 10 5 = 4.21 V 70 + 6 36 Example 3 – Solution (cont’d) The circuit becomes as shown; Taking the loop VBB – B1 – E1 – V–; RBB I B1 + (1 + b )RE1 = VBB V VBE1 Substituting values; 5.53I B1 + (1 + 125) 0.2I B1 = 4.21 + 5 0.7 I B1 = 2.93A 37 Example 3 – Solution (cont’d) I C1 = bI B1 = 125 2.93A = 0.366 mA I E1 = (1 + b )I B1 = 125 2.93A = 0.369 mA 38 Example 3 – Solution (cont’d) Taking the loop V+ – RC1 – B2 – E2 – RE2 – V–; I 3 RC1 + VBE 2 + I E 2 RE 2 = V + V But; I 3 = I C1 + I B 2 and; I E 2 = (1 + b )I B 2 39 Example 3 – Solution (cont’d) Hence; (I C1 + I B 2 )RC1 + (1 + b )I B 2 RE 2 = V + V VBE 2 Substituting values; (0.366 + I B 2 )5 + (1 + 125)I B 2 1.5 = 5 + 5 0.7 Or; I B 2 = 38.5 A 40 Example 3 – Solution (cont’d) Hence; I C 2 = bI B 2 = 125 38.5 A = 4.81 mA I E 2 = (1 + b )I B 2 = (1 + 125) 38.5 A = 4.85 mA and; I 3 = I C1 + I B 2 = 0.366 + 0.0385 = 0.405 mA 41 Example 3 – Solution (cont’d) VC1 = V + I 3 RC1 = 5 0.405 5 = 2.98 V VE 1 = I E 1 RE 1 + V = 0.369 0.2 5 = 4.93 V 42 Example 3 – Solution (cont’d) VC 2 = V + = 5 V VE 2 = I E 2 RE 2 + V = 4.85 1.5 5 = 2.28 V 43 Example 3 – Solution (cont’d) VCE1 = VC1 VE1 = 2.98 + 4.93 = 7.91 V VCE 2 = VC 2 VE 2 = 5 2.28 = 2.72 V 44 Example 3 – Solution (cont’d) (a) The Q-points are; I C1 = 0.366 mA; VCE1 = 7.91 V and; I C 2 = 4.81 mA; VCE 2 = 2.72 V 45 Example 3 – Solution (cont’d) The circuit under ac condition 46 Example 3 – Solution (cont’d) Small–signal equivalent circuit 47 Example 3 – Solution (cont’d) r 1 = bVT I C1 125 0.026 = = 8.88 kW 0.000366 I C1 0.000366 g m1 = = = 14.08 mA/V VT 0.026 r 2 = gm2 bVT IC 2 125 0.026 = = 0.676 kW 0.00481 I C 2 0.00481 = = = 185 mA/V VT 0.026 48 Example 3 – Solution (cont’d) V 2 Vo = + g mV 2 (RE 2 // RL ) r 2 V 2 = (1 + b )(RE 2 // RL ) r 2 Vo ' = V + Vo V 2 = V 2 + (1 + b )(RE 2 // RL ) r 2 49 Example 3 – Solution (cont’d) The voltage gain of the second stage is; Vo Av 2 = Vo ' V 2 (1 + b )(RE 2 // RL ) r 2 = V 2 V 2 + (1 + b )(RE 2 // RL ) r 2 50 Example 3 – Solution (cont’d) The voltage gain of the second stage is; ( 1 + b )(RE 2 // RL ) = r 2 + (1 + b )(RE 2 // RL ) Substituting values; ( 1 + 125)(1.5 // 10) Av 2 = 0.676 + (1 + 125)(1.5 // 10) = 0.996 51 Example 3 – Solution (cont’d) Rib2 = r 2 + (1 + b )(RE 2 // RL ) = 0.676 + (1 + 125)(1.5 // 10) = 165 kW 52 Example 3 – Solution (cont’d) V 1 Vs = V 1 + + g m1V 1 RE1 r 1 Vo ' = g m1V 1 (RC1 // Rib2 ) Vo ' Av1 = Vs 53 Example 3 – Solution (cont’d) g m1 (RC1 // Rib2 ) = 1 1 + + g m1 RE1 r 1 b (RC1 // Rib2 ) Av1 = r 1 + (1 + b )RE1 54 Example 3 – Solution (cont’d) Substituting values; (b) b (RC1 // Rib2 ) Av1 = r 1 + (1 + b )RE1 125(5 // 165) = = 17.8 8.88 + (1 + 125) 0.2 Av = Av1 Av 2 = 17.8 0.996 = 17.7 55 Example 3 – Solution (cont’d) 56 EXERCISE 1 The parameters for each transistor in FIG. E1 are b = 100, VA = and VBE = 0.7 V. (a) Determine the small-signal parameters gm, r and ro for both transistors. (b) Determine the small-signal voltage gain Av1 for stage 1 and Av2 for stage 2 separately, where vo1 Av1 = vs and vo Av 2 = vo1 (Assume the output of stage 1 is open to determine Av1) (c) Determine the overall small-signal voltage gain Av, where; vo Av = vs 57 EXERCISE 1 (cont’d) FIG. E1 58