Download webinar_17_SDOF_force_python

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Unit 17
Vibrationdata
SDOF Response to Applied Force
Revision A
1
Introduction

SDOF systems may be subjected to an applied force

Modal testing, impact or steady-state force

Wind, fluid, or gas pressure

Acoustic pressure field

Rotating or reciprocating parts
Vibrationdata
Rotating imbalance
Shaft misalignment
Bearings
Blade passing frequencies
Electromagnetic force, magnetostriction
2
Vibrationdata
SDOF System, Applied Force
m
= mass
c
= viscous damping coefficient
k
= stiffness
x
= displacement of the mass
f(t) = applied force
3
Vibrationdata
Free Body Diagram
Summation of forces
f(t)
x
m
kx
 Fm x
m x   cx  kx  f ( t )
cx
(c / m)  2n
(k / m)  n 2
m x  cx  kx  f ( t )
c
k
1
x   x    x    f ( t )
m
m
m
x  2n x  n2 x 
1
f (t)
m
Solve using Laplace transform.
4
For an arbitrary applied force, the displacement x is
Smallwood-type, ramp invariant, digital recursive filtering relationship
xi 
Vibrationdata
 2 exp  n T cosd T  x i 1
 exp  2n T x i  2








2exp  n T  cosd T  1  exp  n T  n 2 2  1 sin d T    n T  f i

3



m n T 
 d




1



n


2

 2 n T exp  n T  cosd T   21  exp  2n T   2
2  1 exp  n T sin d T  f i 1

3

m n T 
d

1





 n

2


2  1 sin d T   2 cosd T  f i  2
 2   n T  exp  2n T   exp  n T 

3

 d

m n T 



1
d   n 1 -  2

T = time step
5
Vibrationdata
SDOF Acceleration
For an arbitrary applied force, the displacement x is
x i   2 exp  n T cosd T x i 1  exp  2n T x i  2

exp   n T sin d T 
m d T
 f i  2 f i 1  f i  2 
6
Time Domain Calculation for Applied Force
Vibrationdata
Let
fn = 10 Hz
Q=10
mass = 20 lbm
Calculate response to applied force:
F = 4 lbf, freq = 10 Hz, 4 sec duration, 400 samples/sec
First:
vibrationdata > Generate Signal > Sine
Export time history as: sine_force.txt
Next: vibrationdata > Select Input Data Type > Force
> Select Analysis > SDOF Response to Applied Force
7
Applied Force Time History
Vibrationdata
8
Displacement
Vibrationdata
9
Transmitted Force
Vibrationdata
Special case:
SDOF driven at resonance
Transmitted force
= ( Q )( applied force )
10
Synthesize Time History for Force PSD
Vibrationdata
Frequency
(Hz)
Force
(lbf^2/Hz)
10
0.1
1000
0.1
Duration = 60 sec
Similar process to synthesizing a time history for acceleration PSD.
But the integrated force time history does not need to have a mean value of zero.
11
Synthesized Time History for Force PSD
Vibrationdata
Export as:
force_th.txt
vibrationdata > Power Spectral Density > Force > Time History Synthesis from White Noise
f = 4.26 Hz
12
Histogram of Force Time History
Vibrationdata
13
PSD Verification
Vibrationdata
14
SDOF Response
Vibrationdata
Let
fn = 400 Hz
Q=10
mass = 20 lbm
Calculate response to the previous synthesized force time history.
vibrationdata > Select Input Data Type > Force
> Select Analysis > SDOF Response to Applied Force
15
Displacement
Vibrationdata
Export:
disp_resp_th.txt
Overall Level =
7.4e-05 in RMS
16
Velocity
Vibrationdata
Export array:
vel_resp_th.txt
Overall Level =
0.18 in/sec RMS
17
Acceleration
Vibrationdata
Export array:
accel_resp_th.txt
Overall Level = 1.3 GRMS
Crest Factor = 5.0
Theoretical Rayleigh
Distribution
Crest Factor = 4.6
18
Transmitted Force
Vibrationdata
Export array:
tf_resp_th.txt
Overall Level =
24.3 lbf RMS
19
Vibrationdata
Frequency Response Function
Dimension
Displacement/Force
Name
Admittance,
Compliance,
Receptance
Dimension
Force/Displacement
Name
Dynamic Stiffness
Velocity/Force
Mobility
Force/Velocity
Acceleration/Force
Accelerance,
Inertance
Force/Acceleration
Mechanical Impedance Apparent Mass,
Dynamic Mass
20
FRF Estimators
H1  
G FX ()
G FF ()
Vibrationdata
Cross spectrum between force and response divided by
autospectrum of force
Cross spectrum is complex conjugate of first variable
Fourier transform times the second variable Fourier transform.
G FX ()   F * X
* Denotes complex conjugate
The response can be acceleration, velocity or displacement.
21
FRF Estimators (cont)
H 2  
G XX ()
G XF ()
Vibrationdata
Autospectrum of response divided by cross spectrum between
response and force
Coherence Function  is used to assess linearity, measurement, noise, leakage error,
etc. Coherence is ideally equal to one.
2 
G FX ()
2
G XX ()  G FF ()
0  2  1
22
Frequency Response Function Exercise
Vibrationdata
Calculate mobility function (velocity/force) using:
vibrationdata > miscellaneous > modal frf
- Two separate Arrays – Ensemble Averaging
Arrays: force_th.txt & vel_resp_th.txt
df = 3.91 Hz & use Hanning Window Important!
Plot H1 Freq & Mag & Phase
23
Vibrationdata
24
Mobility H1
SDOF fn=400 Hz, Q=10
Vibrationdata
Save Complex Array:
H1_mobility _complex.txt
25
Mobility H2
SDOF fn=400 Hz, Q=10
Vibrationdata
26
Coherence from Mobility
Vibrationdata
Coherence = 0.98
at 400 Hz
27
Estimate Q from H1 Mobility, Curve-fit
Vibrationdata
fn=400 Hz
Q=10.1
H1_mobility _complex.txt
vibrationdata > Damping Functions > Half-power Bandwidth Curve-fit, Modal FRF
28
Homework
Vibrationdata

Repeat the examples in the presentation using the Matlab scripts

Read:
•
T. Irvine, Machine Mounting for Vibration Attenuation, Rev B, Vibrationdata,
2000
•
Bruel & Kjaer Booklets:
Mobility Measurement
Modal Testing
29
Related documents