Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES 2 Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES 3 Quantum Information Processing E Idea: Use Quantum Mechanical properties/effects to gain new possibilities: Quantum Computing Shor-Algorithm Quantum Communication Cryptography A B Quantum memory to synchronize different operations QUBIT STORAGE IN ATOMIC ENSEMBLES 4 Bit vs. Qubit Classical bit: Stores binary information ‚0‘ or ‚1‘ 1 Which quantum mechanical properties set a qubit apart from a classical bit? superposition: 𝑎0 0 + 𝑎1 𝑒 𝑖𝜙 1 entanglement: no classical pendant e.g.: 0 𝐴 1 𝐵 − 1 𝐴 0 A 𝐵 QUBIT STORAGE IN ATOMIC ENSEMBLES 0 B 1 A 1 B 0 A 0 B 5 Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES 6 Quantum Memory stationary qubit i.e. quantum memory (e.g. atom) flying qubit (e.g. photon) storage classical: 1 0 flying qubit (e.g. photon) read-out 𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 𝑅 𝑎𝐿 0 + 𝑎𝑅 𝑒 𝑖𝜙 1 𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 𝑅 current magnetization current QUBIT STORAGE IN ATOMIC ENSEMBLES 7 Performance Criteria Fidelity Efficiency Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 8 Performance Criteria Fidelity Efficiency Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 9 Fidelity How ‚well‘ do we store? 𝜓 ,𝜌 = 𝜓 𝜓 coherent decoherent Quantum memory 𝜓 ′ , 𝜌′ =? (pure state) 𝐹 = 𝜓 𝜌′ 𝜓 QUBIT STORAGE IN ATOMIC ENSEMBLES 10 Performance Criteria Fidelity Efficiency Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 11 Performance Criteria Fidelity Efficiency = 𝑬𝒏𝒆𝒓𝒈𝒚 𝒂𝒇𝒕𝒆𝒓 𝒓𝒆𝒂𝒅−𝒐𝒖𝒕 𝑬𝒏𝒆𝒓𝒈𝒚 𝒃𝒆𝒇𝒐𝒓𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 =𝜼 Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 12 Performance Criteria Fidelity Efficiency Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 13 Performance Criteria Fidelity Efficiency Storage time 𝑭 𝒕 , time evolution of fidelity 𝜼 𝒕 , time evolution of efficiency Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 14 Performance Criteria Fidelity Efficiency Storage time Many more (bandwidth, wavelength, scalability…) QUBIT STORAGE IN ATOMIC ENSEMBLES 15 Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES 16 Single Quantum Emitter Internal states of: Atoms Ions NV-center storage cavity needed read-out Quantum dots Purcell-effect (also needs a cavity) QUBIT STORAGE IN ATOMIC ENSEMBLES 17 Ensembles Ion-doped solids storage? Gases at roomtemperature Cold/ultracold gases read-out? QUBIT STORAGE IN ATOMIC ENSEMBLES 18 Ensembles Ion-doped solids storage? Gases at roomtemperature Cold/ultracold gases read-out? QUBIT STORAGE IN ATOMIC ENSEMBLES 19 Ensembles - Storage ≈ Cavity can be replaced by a huge number of particles QUBIT STORAGE IN ATOMIC ENSEMBLES 20 Ensembles Ion-doped solids storage? Gases at room temperature Cold/ultracold gases read-out QUBIT STORAGE IN ATOMIC ENSEMBLES 21 Ensembles – Read-Out storage read-out 𝑘𝑝ℎ𝑜𝑡𝑜𝑛 𝑘𝑠𝑝𝑖𝑛 𝑤𝑎𝑣𝑒 𝑘𝑝ℎ𝑜𝑡𝑜𝑛 electromagnetic wave spin wave electromagnetic wave 𝑘 photon storage j 𝑘 read-out 𝑘 photon 𝑗 QUBIT STORAGE IN ATOMIC ENSEMBLES 22 Ensembles Ion-doped solids Gases at room temperature Cold/ultracold gases QUBIT STORAGE IN ATOMIC ENSEMBLES 23 Rare-earth ions in solids Ions doped into solids function as stationary qubits High coherence times: optical transition ~ 1µs – 1ms Easy to reproduce, scalable But: inhomogenous broadening (causing dephasing) needs to be controlled Low Temperatures needed (1-4 K) [1] QUBIT STORAGE IN ATOMIC ENSEMBLES 24 Rare-earth ions in solids Fidelity: up to 95% Efficiency: 45% - maximum reached so far Storage time: 𝑂(10µs) – reached so far [1] QUBIT STORAGE IN ATOMIC ENSEMBLES 25 Ensembles Ion-doped solids Gases at room temperature Cold/ultracold gases QUBIT STORAGE IN ATOMIC ENSEMBLES 26 Alkali gases roomtemperatured atomic gas of alkali atoms → cheap spin wave in medium serves as stationary qubit But: coherence time limited by atomic motion → cooling [1] QUBIT STORAGE IN ATOMIC ENSEMBLES 27 Alkali gases Fidelity: > 90% possible Efficiency: up to 87% Storage time: up to 4 ms [1] QUBIT STORAGE IN ATOMIC ENSEMBLES 28 Ensembles Ion-doped solids Gases at roomtemperature Cold/ultracold gases QUBIT STORAGE IN ATOMIC ENSEMBLES 29 EIT – Quick review Ωp Γ Ω𝑐 Light 𝑎0 = 𝐴 1 − 𝐵 2 no contribution of 3 [2] QUBIT STORAGE IN ATOMIC ENSEMBLES 30 EIT - Slow light 0 =𝑐 𝑣𝑔𝑟 m ∝ Ω c ≫ 𝑣𝑔𝑟 𝑐 2 [3,4] QUBIT STORAGE IN ATOMIC ENSEMBLES 31 EIT - Stored Light control beam Ω𝑐 probe photon Ωp (superposition of electromagnetic and spin wave) storage polariton state: store: switched off read-out: switched back on EIT Medium 1 Ω𝑐 2 +𝐴2 Ω𝑐 1 1 𝑝ℎ photonic part QUBIT STORAGE IN ATOMIC ENSEMBLES 𝑚 ∝ Ω 𝑣𝑔𝑟 𝑐 2 read-out −𝐴 2 0 𝑝ℎ ) atomic part 32 EIT – Qubit storage 3− 3+ probe photon probe photon Ω𝑐 𝐿 Ω𝑐 𝑅 2− 2+ 1 𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 |𝑅⟩ 𝑎𝐿 2− + 𝑎𝑅 𝑒 𝑖𝜙 |2+ ⟩ QUBIT STORAGE IN ATOMIC ENSEMBLES 𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 |𝑅⟩ 33 Experimental Results Input L,H,D ⇒ BEC ⇒ QUBIT STORAGE IN ATOMIC ENSEMBLES Polarization Detection 34 Entaglement - Setup polarization detection control beam (2) probe photon (1) BEC beam splitter QUBIT STORAGE IN ATOMIC ENSEMBLES polarization detection 35 Entanglement 𝜓𝑝ℎ⊗𝑝ℎ = 𝑅 𝐿 − |𝐿⟩|𝑅⟩)/ 2 QUBIT STORAGE IN ATOMIC ENSEMBLES 36 entaglement fidelity Results [5] QUBIT STORAGE IN ATOMIC ENSEMBLES 38 Summary Qubit: 𝑎0 0 + 𝑎1 𝑒 𝑖𝜙 1 Stationary vs flying qubit Fidelity, Efficiency, Storage time … Single quantum emitter vs ensemble Qubit Storage via EIT QUBIT STORAGE IN ATOMIC ENSEMBLES 39 Thank you, Simon! QUBIT STORAGE IN ATOMIC ENSEMBLES 40 Sources (1) C. Simon et al.: Quantum memories. In: THE EUROPEAN PHYSICAL JOURNAL D 58. (2010) (2) A. Neuzner: Light Storage and Pulse Shaping using Electromagnetically Induced Transparency. Max-Planck-Institut für Quantenoptik. (2010) (3) M. Lettner: Ein Bose-Einstein-Kondensat als Quantenspeicher für Zwei-Teilchen-Verschränkung. Max-Planck-Institut für Quantenoptik. (2011) (4) S. Baur: Speicherung der Polarisation von Licht in einem Bose-Einstein-Kondensat. Max-PlanckInstitut für Quantenoptik. (2010) (5) M. Lettner et al.: Remote Entanglement between a Single Atom and a Bose-Einstein Condensate. In: PHYSICAL REVIEW LETTERS 106. (No. 21, 2011, May) (6) A. Lvovsky et al.: Optical quantum memory. In: NATURE PHOTONICS 3 (No. 12, 2009) (7) M. Fleischhauer et al.: Eletromagnetically induced transparency: Optics in Coherent Media. In: REVIEWS OF MODERN PHYSICS 77 (No. 2, 2005) QUBIT STORAGE IN ATOMIC ENSEMBLES 41