Download Qubit Storage in Atomic Ensembles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Memory in
Atomic Ensembles
BY GEORG BRAUNBECK
Table of contents
1.
Motivation
2.
Quantum memory
3.
Implementations in general
4.
Implementation based on EIT in detail
QUBIT STORAGE IN ATOMIC ENSEMBLES
2
Table of contents
1.
Motivation
2.
Quantum memory
3.
Implementations in general
4.
Implementation based on EIT in detail
QUBIT STORAGE IN ATOMIC ENSEMBLES
3
Quantum Information Processing
E
 Idea: Use Quantum Mechanical properties/effects to gain new possibilities:
 Quantum Computing
Shor-Algorithm
 Quantum Communication
Cryptography
A
B
 Quantum memory to synchronize different operations
QUBIT STORAGE IN ATOMIC ENSEMBLES
4
Bit vs. Qubit
 Classical bit: Stores binary information ‚0‘ or ‚1‘
1
 Which quantum mechanical properties set a qubit apart from a classical bit?
 superposition: 𝑎0 0 + 𝑎1 𝑒 𝑖𝜙 1
 entanglement: no classical pendant
e.g.: 0 𝐴 1 𝐵 − 1 𝐴 0
A
𝐵
QUBIT STORAGE IN ATOMIC ENSEMBLES
0
B
1
A
1
B
0
A
0
B
5
Table of contents
1.
Motivation
2.
Quantum memory
3.
Implementations in general
4.
Implementation based on EIT in detail
QUBIT STORAGE IN ATOMIC ENSEMBLES
6
Quantum Memory
stationary qubit
i.e. quantum memory
(e.g. atom)
flying qubit
(e.g. photon)
storage
classical:
1
0
flying qubit
(e.g. photon)
read-out
𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 𝑅
𝑎𝐿 0 + 𝑎𝑅 𝑒 𝑖𝜙 1
𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 𝑅
current
magnetization
current
QUBIT STORAGE IN ATOMIC ENSEMBLES
7
Performance Criteria
 Fidelity
 Efficiency
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
8
Performance Criteria
 Fidelity
 Efficiency
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
9
Fidelity
How ‚well‘ do we store?
𝜓 ,𝜌 = 𝜓 𝜓
coherent
decoherent
Quantum
memory
𝜓 ′ , 𝜌′ =?
(pure state)
𝐹 = 𝜓 𝜌′ 𝜓
QUBIT STORAGE IN ATOMIC ENSEMBLES
10
Performance Criteria
 Fidelity
 Efficiency
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
11
Performance Criteria
 Fidelity
 Efficiency =
𝑬𝒏𝒆𝒓𝒈𝒚 𝒂𝒇𝒕𝒆𝒓 𝒓𝒆𝒂𝒅−𝒐𝒖𝒕
𝑬𝒏𝒆𝒓𝒈𝒚 𝒃𝒆𝒇𝒐𝒓𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆
=𝜼
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
12
Performance Criteria
 Fidelity
 Efficiency
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
13
Performance Criteria
 Fidelity
 Efficiency
 Storage time
𝑭 𝒕 , time evolution of fidelity
𝜼 𝒕 , time evolution of efficiency
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
14
Performance Criteria
 Fidelity
 Efficiency
 Storage time
 Many more (bandwidth, wavelength, scalability…)
QUBIT STORAGE IN ATOMIC ENSEMBLES
15
Table of contents
1.
Motivation
2.
Quantum memory
3.
Implementations in general
4.
Implementation based on EIT in detail
QUBIT STORAGE IN ATOMIC ENSEMBLES
16
Single Quantum Emitter
Internal states of:
 Atoms
 Ions
 NV-center
 storage
cavity needed
 read-out
 Quantum dots
Purcell-effect
(also needs a cavity)
QUBIT STORAGE IN ATOMIC ENSEMBLES
17
Ensembles
 Ion-doped solids
 storage?
 Gases at roomtemperature
 Cold/ultracold gases
 read-out?
QUBIT STORAGE IN ATOMIC ENSEMBLES
18
Ensembles
 Ion-doped solids
 storage?
 Gases at roomtemperature
 Cold/ultracold gases
 read-out?
QUBIT STORAGE IN ATOMIC ENSEMBLES
19
Ensembles - Storage
≈
Cavity can be replaced by a
huge number of particles
QUBIT STORAGE IN ATOMIC ENSEMBLES
20
Ensembles
 Ion-doped solids
 storage?
 Gases at room temperature
 Cold/ultracold gases
 read-out
QUBIT STORAGE IN ATOMIC ENSEMBLES
21
Ensembles – Read-Out
storage
read-out
𝑘𝑝ℎ𝑜𝑡𝑜𝑛
𝑘𝑠𝑝𝑖𝑛 𝑤𝑎𝑣𝑒
𝑘𝑝ℎ𝑜𝑡𝑜𝑛
electromagnetic
wave
spin wave
electromagnetic
wave
𝑘
photon
storage
j
𝑘
read-out
𝑘
photon
𝑗
QUBIT STORAGE IN ATOMIC ENSEMBLES
22
Ensembles
 Ion-doped solids
 Gases at room temperature
 Cold/ultracold gases
QUBIT STORAGE IN ATOMIC ENSEMBLES
23
Rare-earth ions in solids
 Ions doped into solids function as stationary qubits
 High coherence times: optical transition ~ 1µs – 1ms
 Easy to reproduce, scalable
 But: inhomogenous broadening (causing dephasing) needs to be controlled
 Low Temperatures needed (1-4 K)
[1]
QUBIT STORAGE IN ATOMIC ENSEMBLES
24
Rare-earth ions in solids
 Fidelity: up to 95%
 Efficiency:
45% - maximum reached so far
 Storage time: 𝑂(10µs) – reached so far
[1]
QUBIT STORAGE IN ATOMIC ENSEMBLES
25
Ensembles
 Ion-doped solids
 Gases at room temperature
 Cold/ultracold gases
QUBIT STORAGE IN ATOMIC ENSEMBLES
26
Alkali gases
 roomtemperatured atomic gas of alkali atoms → cheap
 spin wave in medium serves as stationary qubit
 But: coherence time limited by atomic motion → cooling
[1]
QUBIT STORAGE IN ATOMIC ENSEMBLES
27
Alkali gases
 Fidelity: > 90% possible
 Efficiency: up to 87%
 Storage time: up to 4 ms
[1]
QUBIT STORAGE IN ATOMIC ENSEMBLES
28
Ensembles
 Ion-doped solids
 Gases at roomtemperature
 Cold/ultracold gases
QUBIT STORAGE IN ATOMIC ENSEMBLES
29
EIT – Quick review
Ωp
Γ
Ω𝑐
Light
𝑎0 = 𝐴 1 − 𝐵 2
no contribution of 3
[2]
QUBIT STORAGE IN ATOMIC ENSEMBLES
30
EIT - Slow light
0 =𝑐
𝑣𝑔𝑟
m ∝ Ω
c ≫ 𝑣𝑔𝑟
𝑐
2
[3,4]
QUBIT STORAGE IN ATOMIC ENSEMBLES
31
EIT - Stored Light
control beam
Ω𝑐
probe photon
Ωp
(superposition of
electromagnetic
and spin wave)
storage
polariton state:
store: switched off
read-out: switched back on
EIT Medium
1
Ω𝑐 2 +𝐴2
Ω𝑐 1 1
𝑝ℎ
photonic
part
QUBIT STORAGE IN ATOMIC ENSEMBLES
𝑚 ∝ Ω
𝑣𝑔𝑟
𝑐
2
read-out
−𝐴 2 0
𝑝ℎ )
atomic
part
32
EIT – Qubit storage
3−
3+
probe photon
probe photon
Ω𝑐
𝐿
Ω𝑐
𝑅
2−
2+
1
𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 |𝑅⟩
𝑎𝐿 2− + 𝑎𝑅 𝑒 𝑖𝜙 |2+ ⟩
QUBIT STORAGE IN ATOMIC ENSEMBLES
𝑎𝐿 𝐿 + 𝑎𝑅 𝑒 𝑖𝜙 |𝑅⟩
33
Experimental Results
Input L,H,D
⇒
BEC
⇒
QUBIT STORAGE IN ATOMIC ENSEMBLES
Polarization Detection
34
Entaglement - Setup
polarization
detection
control beam
(2)
probe photon
(1)
BEC
beam splitter
QUBIT STORAGE IN ATOMIC ENSEMBLES
polarization
detection
35
Entanglement
𝜓𝑝ℎ⊗𝑝ℎ =
𝑅 𝐿 − |𝐿⟩|𝑅⟩)/ 2
QUBIT STORAGE IN ATOMIC ENSEMBLES
36
entaglement fidelity
Results
[5]
QUBIT STORAGE IN ATOMIC ENSEMBLES
38
Summary
 Qubit: 𝑎0 0 + 𝑎1 𝑒 𝑖𝜙 1
 Stationary vs flying qubit
 Fidelity, Efficiency, Storage time …
 Single quantum emitter vs ensemble
 Qubit Storage via EIT
QUBIT STORAGE IN ATOMIC ENSEMBLES
39
Thank you, Simon!
QUBIT STORAGE IN ATOMIC ENSEMBLES
40
Sources
(1) C. Simon et al.: Quantum memories. In: THE EUROPEAN PHYSICAL JOURNAL D 58. (2010)
(2) A. Neuzner: Light Storage and Pulse Shaping using Electromagnetically Induced Transparency.
Max-Planck-Institut für Quantenoptik. (2010)
(3) M. Lettner: Ein Bose-Einstein-Kondensat als Quantenspeicher für Zwei-Teilchen-Verschränkung.
Max-Planck-Institut für Quantenoptik. (2011)
(4) S. Baur: Speicherung der Polarisation von Licht in einem Bose-Einstein-Kondensat. Max-PlanckInstitut für Quantenoptik. (2010)
(5) M. Lettner et al.: Remote Entanglement between a Single Atom and a Bose-Einstein Condensate.
In: PHYSICAL REVIEW LETTERS 106. (No. 21, 2011, May)
(6) A. Lvovsky et al.: Optical quantum memory. In: NATURE PHOTONICS 3 (No. 12, 2009)
(7) M. Fleischhauer et al.: Eletromagnetically induced transparency: Optics in Coherent Media. In:
REVIEWS OF MODERN PHYSICS 77 (No. 2, 2005)
QUBIT STORAGE IN ATOMIC ENSEMBLES
41
Related documents