Download ALGEBRA2 PRACTICE FINAL EXAM 2 PART I  

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ALGEBRA2 PRACTICE FINAL EXAM 2
PART I
1. Solve the equation for x: 3x  4  85
(1) 2
(2) -2
(3) 4
(4) -4
2. Given the function f ( x)  2( x  3) 2 . Find the numerical value of f ( 2) .
(1) 2
(2) -2
(3) 1
(4) 4
3. Find the product: (3  7i )(2  8i ) .
(1) -50 + 10i
(2) 6 – 46i
3
4. If f ( x)  x 2 find f
(1) -64
(3) 62 – 10i (4) 62 + 10i
1I
F
G
H16J
K.
(2) 64
(3) -12
(4) 12
5. The roots of the equation 5x 2  3x  k  0 will be imaginary when k = ?
(1) -.45
(2) .45
(3) -3
(4) 3
6. If x  log 3 62 , find the value of x to the nearest hundredth.
(1) .27
(2) 2.11
(3) 3.75
(4) 3.76
7. In which quadrant does the sum of 4  6i , and ,3  2i lie?
(1) I
(2) II
(3) III
(4) IV
b g
8. The expression 2 x  7 in expanded form equals:
(1) 4x2 – 49
(2) 4x2 + 49
(3)4x2–28x+49 (4)4x2–28x–49
2
4  4r
.
2r 2  r  3
4r
4
(3) 2
(4)
2r  3
2r  3
9. Reduce the algebraic fraction to lowest terms:
(1)
4
2r  3
(2)
2  2r
r r3
2
10. The graph of the equation 3x 2  5 y 2  35 is the conic section:
(1) parabola
(2) circle
(3) ellipse (4)hyperbola
1
log x  2 log y as a single logarithm.
2
(1) log xy
(2) log x y 2
(3) log x +log y2 (4)log xy2
11. Express
12. If y varies inversely with x, and y = 2 when x = 8, find the value of y when x =
12.
(1)
4
3
(2) 3
5
3
(3)
(4) 48
13. If f ( x )  x 2  3x and g( x)  3x find f ( g ( 5)) .
(1) -30
(2) 120
(3) 210
(4) 270
14. Find the solution set for the inequality x 2  9 x  14  0 .
(1)x ≤ 2 or x ≥ 7
(2)x ≤ -7 or x ≥ -2
(3) 2 ≤ x ≤ 7 (4) -7 ≤ x ≤ 2
15. Find the value of angle X to the nearest degree if
arc A = 1650 and arc B = 750.
(1) 45 
(3) 90 
(2) 120 
(4) 240 
16. What is the solution set for the equation
(1) 3
(2) 5
17. Simplify and express in a + bi form:
(1) i
A
B
x 3 4  2.
8
(3)
3
X
(4) 33
3  2i
.
2  3i
(2) -i
1
x2
18. Simplify the complex fraction:
1
3
x
3x  1
(1) 4
(2)
x
(3)
6
i

13 13
(4)
(3)
8
3 x
(4)
6
i
13
9
3x  1
x
19. If log x 64  3 , find the value of x.
(1) 4
(2) 8
(3) -4
(4) 16
20. Find the domain of f ( x )  2 x  14 .
(1) x ≥ 7
(2) x ≤ 7
(3) x > 7
(4) x < 7
21. Solve for all values of x given the equation: 2 x  3  21 .
(1) {-12,9}
(2) {9,12}
(3) {219}
(4) {-9,9}
22. Rationalize the denominator and express the answer in simplest terms:
(1) 4
(2)
24
6
(3)
2 6
3
(4)
4 6
6
4
.
6
PART II
23. Solve the following absolute value inequality and graph the solution set on the
real number line: x  3  14
24. For the equation x 2  6x  5  0 , find a) the sum of the roots and b) the product of
the roots.
25. Write in simplest form: 2 108  3 48 .
26. Factor the following expression completely: x  49 x 3 .
PART III
27. Solve the following equation and express the roots in simplest a + bi form.
x2  4x  5  0
NAME_________________________________________________Pd
_______________
ALGEBRA 2
EASTER ASSIGNMENT
PRACTICE FINAL EXAM 2
This assignment is DUE ON 3/31.
Part I: Place the number of the correct choice on the line provided. Show all work on
loose leaf and attach to this answer sheet.
1. ______
7. ______
13. ______
19. ______
2. ______
8. ______
14. ______
20. ______
3. ______
9. ______
15. ______
21. ______
4. ______
10.______
16.______
22.______
5. ______
11.______
17.______
6. ______
12.______
18.______
Part II: Show all work in the space provided.
23.
24.
25.
Part III: Show all work.
27.
26.
Related documents