Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
```ALGEBRA2 PRACTICE FINAL EXAM 2
PART I
1. Solve the equation for x: 3x  4  85
(1) 2
(2) -2
(3) 4
(4) -4
2. Given the function f ( x)  2( x  3) 2 . Find the numerical value of f ( 2) .
(1) 2
(2) -2
(3) 1
(4) 4
3. Find the product: (3  7i )(2  8i ) .
(1) -50 + 10i
(2) 6 – 46i
3
4. If f ( x)  x 2 find f
(1) -64
(3) 62 – 10i (4) 62 + 10i
1I
F
G
H16J
K.
(2) 64
(3) -12
(4) 12
5. The roots of the equation 5x 2  3x  k  0 will be imaginary when k = ?
(1) -.45
(2) .45
(3) -3
(4) 3
6. If x  log 3 62 , find the value of x to the nearest hundredth.
(1) .27
(2) 2.11
(3) 3.75
(4) 3.76
7. In which quadrant does the sum of 4  6i , and ,3  2i lie?
(1) I
(2) II
(3) III
(4) IV
b g
8. The expression 2 x  7 in expanded form equals:
(1) 4x2 – 49
(2) 4x2 + 49
(3)4x2–28x+49 (4)4x2–28x–49
2
4  4r
.
2r 2  r  3
4r
4
(3) 2
(4)
2r  3
2r  3
9. Reduce the algebraic fraction to lowest terms:
(1)
4
2r  3
(2)
2  2r
r r3
2
10. The graph of the equation 3x 2  5 y 2  35 is the conic section:
(1) parabola
(2) circle
(3) ellipse (4)hyperbola
1
log x  2 log y as a single logarithm.
2
(1) log xy
(2) log x y 2
(3) log x +log y2 (4)log xy2
11. Express
12. If y varies inversely with x, and y = 2 when x = 8, find the value of y when x =
12.
(1)
4
3
(2) 3
5
3
(3)
(4) 48
13. If f ( x )  x 2  3x and g( x)  3x find f ( g ( 5)) .
(1) -30
(2) 120
(3) 210
(4) 270
14. Find the solution set for the inequality x 2  9 x  14  0 .
(1)x ≤ 2 or x ≥ 7
(2)x ≤ -7 or x ≥ -2
(3) 2 ≤ x ≤ 7 (4) -7 ≤ x ≤ 2
15. Find the value of angle X to the nearest degree if
arc A = 1650 and arc B = 750.
(1) 45 
(3) 90 
(2) 120 
(4) 240 
16. What is the solution set for the equation
(1) 3
(2) 5
17. Simplify and express in a + bi form:
(1) i
A
B
x 3 4  2.
8
(3)
3
X
(4) 33
3  2i
.
2  3i
(2) -i
1
x2
18. Simplify the complex fraction:
1
3
x
3x  1
(1) 4
(2)
x
(3)
6
i

13 13
(4)
(3)
8
3 x
(4)
6
i
13
9
3x  1
x
19. If log x 64  3 , find the value of x.
(1) 4
(2) 8
(3) -4
(4) 16
20. Find the domain of f ( x )  2 x  14 .
(1) x ≥ 7
(2) x ≤ 7
(3) x > 7
(4) x < 7
21. Solve for all values of x given the equation: 2 x  3  21 .
(1) {-12,9}
(2) {9,12}
(3) {219}
(4) {-9,9}
22. Rationalize the denominator and express the answer in simplest terms:
(1) 4
(2)
24
6
(3)
2 6
3
(4)
4 6
6
4
.
6
PART II
23. Solve the following absolute value inequality and graph the solution set on the
real number line: x  3  14
24. For the equation x 2  6x  5  0 , find a) the sum of the roots and b) the product of
the roots.
25. Write in simplest form: 2 108  3 48 .
26. Factor the following expression completely: x  49 x 3 .
PART III
27. Solve the following equation and express the roots in simplest a + bi form.
x2  4x  5  0
NAME_________________________________________________Pd
_______________
ALGEBRA 2
EASTER ASSIGNMENT
PRACTICE FINAL EXAM 2
This assignment is DUE ON 3/31.
Part I: Place the number of the correct choice on the line provided. Show all work on
loose leaf and attach to this answer sheet.
1. ______
7. ______
13. ______
19. ______
2. ______
8. ______
14. ______
20. ______
3. ______
9. ______
15. ______
21. ______
4. ______
10.______
16.______
22.______
5. ______
11.______
17.______
6. ______
12.______
18.______
Part II: Show all work in the space provided.
23.
24.
25.
Part III: Show all work.
27.
26.
```
Related documents