Download Lecture 1: Introduction to exoplanetary transits

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Aquarius (constellation) wikipedia , lookup

Kepler (spacecraft) wikipedia , lookup

Definition of planet wikipedia , lookup

IAU definition of planet wikipedia , lookup

Timeline of astronomy wikipedia , lookup

CoRoT wikipedia , lookup

Transcript
Lecture 1: Introduction to
exoplanetary transits!
Transit probability!
Early detections!
Transit depths and durations!
Model-independent system parameters!
Vietri Sul Mare 2015!
The Transit Method!
Transiting planets!
•  Struve 1952: Observatory 72, 199. !
Vietri Sul Mare 2015!
The Transit Method!
Transits
Simplest method: look for drop in stellar flux due to a planet !
transiting across the stellar disc!
International Space Station and
Space Shuttle crossing the disk
of the Sun!
Venus Transit in 2004!
Transits only occur if the orbit is almost edge-on. What is the probability?!
Vietri Sul Mare 2015!
The Transit Method!
Orbital inclination, i!
!
Angle OSE, subtended at star S !
!
by direction O of orbital pole!
!
and direction E to Earth
(along red axis) !
E
!
i = 90o => equator-on!
i = 0o => pole-on!
!
Vietri Sul Mare 2015!
O
i
S
The Transit Method!
Full and grazing transits!
a!
•  Grazing transit!
a cosi ≤ R* + Rp
i!
To Observer!
•  Full transit!
a cosi ≤ R* − Rp
Vietri Sul Mare 2015!
The Transit Method!
Random Orbit Orientation!
•  Probability that angle between pole of orbit and
line of sight lies between i and i + di?!
dΩ 2π sin(i)d(i) d(cos(i))
d(Prob) =
=
=
4π
4π
2
Δi
d(Prob)
d(cos(i))
i
€
€
−1
€
cos(i)
+1
€
€
Vietri Sul Mare 2015!
€
€
The Transit Method!
Transit Probability!
Transits occur only in nearly edge-on orbits:!
a cos i ≤ R* + R p
Random orbit orientation -> probability uniform in cos(i).!
Transit probability is then:!
"
R* + R p % R* + R p R*
Prob$ cos i <
≈
'=
a &
a
a
#
Transit surveys find planets in small orbits around large parent stars.!
Vietri Sul Mare 2015!
The Transit Method!
Transit
Probability!
$ R∗ ' $ 1AU '
R*
Prob ≈
≈ 0.005 &
)
)&
%
(
a
R
a
% sun (
€
•  Hot planets more likely to be detected. !
•  Prob = 0.5 % at 1 AU, Prob = 0.1 % at 5 AU (Jupiter’s orbit)!
•  Prob = 10% at 0.05 AU (Hot Jupiters)!
•  Thousands of stars must be monitored to discover planets by spotting their
transits. !
Vietri Sul Mare 2015!
The Transit Method!
1999
First Transiting Exoplanet!
HD 209458
mag!
V=7.6
1.6% deep “winks” !
last 3 hours
!
repeat every 3.5 days!
Charbonneau & Brown (2000)
10 cm
telescope!
STARE
A Very Big Discovery
by a grad student using
a Very Small Telescope!
Vietri Sul Mare 2015!
The Transit Method!
HD 209458
Transits
HST/STIS!
Brown et al. (2001)
P = 3.52 d
a = 0.046 AU!
mV = 7.8 !
Δf / f = 0.017 mag (1.6%)!
i = 86°.6 ± 0°.2
rp = 1.35 ± 0.06 rJ!
!
From radial velocities!
m sin i = 0.69 mJ!
⇒ “bloated” gas giant!
Vietri Sul Mare 2015!
HST Data!
1%!
The Transit Method!
Transit Depth!
What fraction of the star’s disk does the planet cover?!
2
2
−2
!
%
(
rp % R∗ (
Δf % rp (
≈ ' * = 0.01
** '
! ''
*
f & R∗ )
rJup ) & Rsun )
&
!
Find star radius from its spectral type.!
Observed depth yields planet/star area ratio.!
€
Vietri Sul Mare 2015!
The Transit Method!
Transit duration!
•  Winn 2008, IAU Symp. 253!
Vietri Sul Mare 2015!
The Transit Method!
Transit duration and stellar density!
•  Seager & Mallén-Ornelas, 2003, ApJ 585, 1038!
•  Simplest case: circular orbit, i=90 degrees!
–  Relative transit duration:!
circumference = 2π a
T
2R∗
≈
P 2π a
–  Kepler’s 3rd Law:!
" P%
a = G M∗ $ '
# 2π &
€
2
3
–  Hence!
1/3
T
R∗ R∗ # 4π &
≈
= %
2(
P π a π $ GM ∗ P '
2
1/3
−1/3
# P & # ρ∗ &
T ≈ 3h % ( %
(
$ 4d ' $ ρ Sun '
Vietri Sul Mare 2015!
2 R∗
The Transit Method!
Planetary surface gravity!
•  Southworth, Wheatley & Sams 2007, MNRAS 379, L11!
•  Simplest case: circular orbit, i=90 degrees!
–  Stellar orbital acceleration:!
–  Inverse square law of gravitation:!
Stellar radial
acceleration at
conjunction!
Vietri Sul Mare 2015!
Planet
surface
gravity!
Transit
depth!
Transit
duration!
The Transit Method!
Planetary density!
•  Need to know planet radius and surface gravity:!
•  Use stellar angular diameter θ and parallax π:!
•  Hence get planetary bulk density:!
Stellar
parallax!
Vietri Sul Mare 2015!
Stellar
angular
diameter!
Transit
depth!
The Transit Method!
Transit Duration ( i < 90o )!
Transit duration reduces to 0 as orbit
tips away from edge-on.!
Time from first to last contact:!
For cos i << 1 this becomes:!
Vietri Sul Mare 2015!
Seager & Mallen-Ornelas 2003, ApJ 585, 1038 !
The Transit Method!
Transit Duration!
Inclination determines impact
parameter, b = a cos i / R* hence shape
of lightcurve .!
Vietri Sul Mare 2015! Seager & Mallen-Ornelas 2003, ApJ 585, 1038 !
The Transit Method!
Fundamental derived quantities!
•  Winn 2008, IAU Symp. 253!
Vietri Sul Mare 2015!
The Transit Method!
Model-independent parameters!
•  Winn 2008, IAU Symp. 253!
Vietri Sul Mare 2015!
The Transit Method!
(1) Spectral Type gives star mass and radius.!
(2) Period (+ Kepler’s law) gives orbit size.!
(3) Depth of transit gives planet radius.!
Models of planets with masses between ~ 0.1 MJ and 10 MJ, !
have almost the same radii (i.e. a flat mass-radius relation). !
-> Giant planets transiting solar-type stars expected to have
transits depths of around 1%!
(4) Impact parameter b = a cos(i)/R*, determined from the shape of the transit,
gives a measure of inclination angle.!
(5) Bottom of light curve is not flat in all wave bands, providing a measure of
stellar limb-darkening !
(6) Since inclination is measured, can measure mass, not just lower limit mp
sin(i), from the radial velocity data.!
Vietri Sul Mare 2015!
The Transit Method!
Summary!
•  Transit probability is ~ R*/a!
–  10% for hot Jupiter, 0.5% for Earth transiting Sun!
•  Transit depth is ~ (Rp/R*)2 !
–  1% for Jupiter transiting Sun!
•  Transit duration is ~ R*/a!
–  Gives stellar density via Kepler 3!
•  Transit depth, duration and radial acceleration of
star yield planetary surface gravity.!
•  To get planet density, need to know stellar radius!
–  Use stellar models, !
–  OR stellar angular diameter + parallax (Gaia)!
•  Impact parameter b = a cos(i)/R*!
•  Eccentricity modifies transit duration!
–  Need to know orbital parameters!
Vietri Sul Mare 2015!
The Transit Method!