Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Engineering 43 Thevenin/Norton AC Power Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Engineering-43: Engineering Circuit Analysis 1 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Thevenin’s Equivalence Theorem LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A RTH vTH i a vO b _ i a LINEAR CIRCUIT vO _ PART A LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B b PART B Time-Domain to FrequencyDomain Analogy vO VO i I VTH VTH RTH ZTH Thevenin Equivalent Circuit for PART A Engineering-43: Engineering Circuit Analysis 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Thevenin Analysis Same Circuit as before, Find 𝐈𝑂 by Thevenin Take as “Part B” Load the 1Ω Resistor Thru Which 𝐈𝑂 Flows The Thevenin Ckt Now Use Src-Xform Vx 2A0 (1 j ) Vx (2 j 2)V Engineering-43: Engineering Circuit Analysis 3 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Thévenin Analysis cont. The Xformed Circuit Combine 8 2j Series V-Srcs Now the Combined 8+j2 Source and all The Impedance are IN SERIES Find 𝐙Th by Zeroing the 8V+j2V Source • Thus 𝐕OC Determined by V-Divider VOC 1 j 10 j 6 (8 2 j ) (1 j ) (1 j ) 2 Engineering-43: Engineering Circuit Analysis 4 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Untangle the 2-Source Circuit Engineering-43: Engineering Circuit Analysis 5 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Analyze ReDrawn Voltage Divider Z2 Z1 VO The V-Divider Formula: VO VS Z2 Z1 Z2 VOC 1 j 1 j 8 8 j 2 j 2 j2 8 2 j 8 2 j (1 j ) (1 j ) 2 2 VOC 8 8 j 2 j 2 j 2 8 2 8 j 2 j 10 6 j 53j 2 2 2 Engineering-43: Engineering Circuit Analysis 6 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Analyze ReDrawn Voltage Divider Z1 VS Z2 VO The V-Divider Formula: VO VS Z2 Z1 Z2 VOC 1 j 1 j 8 8 j 2 j 2 j2 VO 8 2 j 8 2 j (1 j ) (1 j ) 2 2 VOC 8 8 j 2 j 2 j 2 8 2 8 j 2 j 10 6 j VO 53j 2 2 2 Engineering-43: Engineering Circuit Analysis 7 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Thévenin Analysis Find 𝐙Th by Zeroing the 8+j2 V-Source ZTH (1 j ) || (1 j ) ZTH 1 j 1 j 1 j 1 j ZTH 1 j2 2 1 11 2 Engineering-43: Engineering Circuit Analysis 8 So The Thévenin Equivalent Circuit 𝐈𝑂 is Now Simple VOC VTH IO ZTH 1 1 1 53j IO ( A) 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Norton’s Equivalence Theorem LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A RN a vO b _ iN i i a LINEAR CIRCUIT vO _ PART A LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B b PART B Time-Domain to FrequencyDomain Analogy vO VO i I iN I N RN Z N Norton Equivalent Circuit for PART A Engineering-43: Engineering Circuit Analysis 9 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Norton Analysis Same Circuit, Find 𝐈𝑂 by Norton Take as the “Part B” Load the 1Ω Resistor Thru Which 𝐈𝑂 Flows Shorting the Load Yields 𝐈SC = 𝐈N Possible techniques to Find 𝐈SC : • Loops or Nodes • Source Transformation • SuperPosition Choose Nodes Engineering-43: Engineering Circuit Analysis 10 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Norton Analysis cont ShortCkt & SuperNode On The Norton Circuit I SC 60 8 2 j 20 A 1 j 1 j As Before DeActivate Srcs toFind 𝐙N = 𝐙Th Z Th (1 j ) || (1 j ) 1 Engineering-43: Engineering Circuit Analysis 11 Above Ckt Untangled Use 𝐈SC = 𝐈N , and 𝐙Th = 𝐙N to Find 𝐈𝑂 • See Next Slide Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx AC Norton Analysis cont.2 The Norton Equivalent Circuit with Load ReAttached Find 𝐈𝑂 By I-Divider I O I SC I SC 4 j 1 ZN 1 11 1 j 4 j 1 j IO 1 j 1 j IO 4 j 4 j j 2 5 j 3 A 12 j 2 Engineering-43: Engineering Circuit Analysis 12 Same as all the Others 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Outline – AC Steady State Power Instantaneous Power Concept • For The Special Case Of Steady State Sinusoidal Signals Average Power Concept • Power Absorbed Or Supplied During an Integer Number of Complete Cycles Maximum Average Power Transfer • When The Circuit is in Sinusoidal Steady State Engineering-43: Engineering Circuit Analysis 13 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Outline – AC SS Power cont. Power Factor • A Measure Of The Angle Between the CURRENT and VOLTAGE Phasors Power Factor Correction • Improve Power Transfer To a Load By “Aligning” the I & V Phasors Single Phase Three-Wire Circuits • Typical HouseHold Power Distribution Engineering-43: Engineering Circuit Analysis 14 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Instantaneous Power Consider in the Time Domain a Voltage Source Supplying Current to an Impedance Load Now Recall From Chp1 The Eqn for Power p vi Then at any Instant for Time-Varying Sinusoidal Signals pt vt it VM I M cos t v cos t i In the General Case v(t ) VM cos t v i(t ) I M cos t i Engineering-43: Engineering Circuit Analysis 15 Now Use Trig ID cos x cos y 1 cos( x y) cos( x y) 2 Trig ID on WhtBd Srn Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 16 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Instantaneous Power cont. ReWriting the Power Relation for Sinusoids VM I M cos( v i ) cos(2 t v i ) p (t ) 2 VM I M VM I M p (t ) cos( v i ) cos( 2 t v i ) 2 2 • The First Term is a CONSTANT, or DC value; i.e. There is NO Time Dependence • The Second Term is a Sinusoid of TWICE the Frequency of the Driving Source Examine the TWO Terms of the Power Equation Engineering-43: Engineering Circuit Analysis 17 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example For the Single Loop Ckt Use Phasors To find 𝐈 V 4V60 I 2A30 Z 230 Assume To Obtain the Time Domain current Take the Real Part of the Phasor Current v(t ) 4V cos t 60 i (t ) Re230 Re2e30e jt or V 4V60 i t 2Amp cos t 30 and Z 230 Engineering-43: Engineering Circuit Analysis 18 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example cont Thus for This case In the Power Equation p (t ) vt i t 4 Wcos60 30 cos2 t 60 30 4V cos t 60 1.732 j 230 The Amplitudes and Phase Angles VM 4V I M 2A v 60 i 30 Engineering-43: Engineering Circuit Analysis 19 Or p (t ) 3.46 W 4 W cos2 t 90 See Next Slide for Plots • v(t) • i(t) • p(t) = v(t)•i(t) Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Sinusoidal Power Example 9.1 8 p(t) Calculated by p(t)=v(t)•i(t) Max-p = 7.46W 6 v(t) or i(t) or p(t) 4 Avg-p = 3.46W 2 0 NEGATIVE POWER – Inductive Load can Release stored Energy to the Circuit -2 v(t) (V) -4 0.000 0.003 0.006 0.009 0.012 i(t) (V) 0.015 P(t) (V) 0.018 0.021 0.024 0.027 Time (S) file =Sinusoid_Lead-Lag_Plot_0311.xls p = 0 if either i or v are zero Engineering-43: Engineering Circuit Analysis 20 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx 0.030 Average Power For ANY Periodic Function, It’s Average Value Can be calculated by Integrating Over at Least ONE COMPLETE PERIOD, T, and Then Dividing the Integrated Value by t T the Period 1 0 X x(t )dt t0 an arbitary BaseLine time T t0 Then the Average POWER for Electrical Circuits With SINUSOIDAL Excitation 1 T t0 1 T t0 P pt dt vt i t dt t T 0 T t0 1 T t0 VM I M cos t v cos t i dt T t0 And Recall T 2 Engineering-43: Engineering Circuit Analysis 21 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Average Power cont Also For ANY Periodic Function, the Average value May be Calculated over any INTEGER number of periods. This is, in Fact, How most Electrical Power Values are MEASURED. For a Sinusoid: 1 P nT nT t 0 t0 VM I M cos t v cos t i dt Now Sub Into the Average Power Integral The Simplified (n =1) Expression for Instantaneous Power 1 T t0 VM I M cos( v i ) cos(2 t v i )dt P t T 0 2 1 VM I M T t0 1 VM I M T t0 P cos( v i )dt cos( 2 t v i )dt t t 0 0 T 2 T 2 Engineering-43: Engineering Circuit Analysis 22 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Average Power cont.2 Examine the Two Terms from the Average Power Eqn T t0 1 VM I M T t0 1 VM I M P1 cos( v i )dt cos( v i ) 1dt t t0 0 T 2 T 2 1 VM I M VM I M T t0 P1 cos v i t t0 P1 cos( v i ) T 2 2 Thus the First Term is a CONSTANT that depends on the Relative Phase Angle Also by Trig: cos(−) = cos() • Thus for the First Term It Does NOT Matter if the Current LEADS or LAGs the Voltage cosv i cosv i cos v i cosi v Engineering-43: Engineering Circuit Analysis 23 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Average Power cont.3 The Second Term from the Average Power Eqn 1 VM I M P2 T 2 T t 0 t0 cos( 2 t v i )dt 0 • As the The Integral of a sin or cos over an INTEGER number of periods is ZERO Thus the Average Power is Described by the FIRST TERM ONLY VM I M VM I M P cos( v i ) P cos( i v ) 2 2 VM I M P cos 2 Engineering-43: Engineering Circuit Analysis 24 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Resistive & Reactive Power For a Purely RESISTIVE Circuit There is NO Imaginary Component of the Impedance and thus NO Phase Shift Between i & v. So for Sinusoids VM I M Pres 2 Thus the Resistors Absorb, or Dissipate, Power (as Heat) only Engineering-43: Engineering Circuit Analysis 25 For a Purely REACTIVE Circuit i&v are ±90° out of phase • So then Avg Power eqn Preact VM I M cos 90 0! 2 Thus Purely reactive Impedances absorb NO Power on Average • They STORE Energy over one Half-Cycle, and then RELEASE it over the NEXT Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Avg Power For This Circuit The Power Parameters VM 10V v 60 I M 3.54A i 15 The Power Calculation VM I M P cos( v i ) 2 10V 3.54A P cos60 15 2 P 17.7 W cos 45 12.5W FIND: The Dissipated Power Use Phasor Algebra to Find the Current I 10V60 1060 3.5415A 2 j 2 2.828445 Engineering-43: Engineering Circuit Analysis 26 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Avg Power cont Since Only the Resistor Dissipates Power, Check the Previous Calc by using Pres=vres•i VR Alternatively by OHM VR RI 2 3.54A15 7.07V15 For a Resistor the Current & Voltage WITHIN the Resistor are IN-PHASE; thus P Use Phasor V-Divider for VR VR 2 10V60 7.07V15(V ) 2 j2 Engineering-43: Engineering Circuit Analysis 27 VM , R I M cos( v i ) 2 7.07 V 3.54A P cos15 15 2 P 25.00 W 2 12.5W Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Cap Circuit For This Circuit I Find the Total Impedance Across the V-Source 4( j 4) 8 j8 j16 4 j4 4 j4 25.3 71.6 4.4721 26.565 4 2 45 ZT 2 I2 Find The Dissipated Power in Each Resistor Start by Finding The Current In the Ckt Branches that Contain the Resistors Engineering-43: Engineering Circuit Analysis 28 Then The total Current I I V 12V60 ZT 4.47 26.6 2.68 A86.6 • i(t) LEADS vS(t) Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Cap Circuit cont I 2.68A86.6 I2 So the 2Ω Resistor Power Dissipation PR V I M ,R 2 M cos v i 1 RI M I M cos0 2 1 PR RI M2 2 PR Engineering-43: Engineering Circuit Analysis 29 P2 1 2 1 RI M 2 2.682 7.20W 2 2 Now Find I2 by Current Divider j4 4 90 I 2.6886.6 4 j4 4 2 45 1.9041.6 I2 Then the Power Absorbed by the 4Ω R 1 P4 4 1.902 (W ) 2 P4 7.20W Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Maximum Avg Power Transfer Recall From the Study of Resistive Ckts The Criteria for Max Power Xfer to a Load Resistor Consider This General Thevenin Equivalent Ckt RL ,max pwr RTh Where RTH is the Thevenin Equivalent Resistance for the Driving Ckt Now Try to Develop a Similar Relationship for Impedances Engineering-43: Engineering Circuit Analysis 30 For This Ckt the Avg Pwr Delivered to the Load 1 PL VL I L cos vL iL 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Max Avg Power Transfer cont Now by Phasors VOC IL Z Th Z L VL VOC ZL Z Th Z L Where V Z VM Z M V Z Z L RL jX L V Z VM Z M Z Th RTh jX Th and V Z V Z Engineering-43: Engineering Circuit Analysis 31 Now By Euler Rln Recall Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Max Avg Power Transfer cont.2 Then the Load Voltage & Current Magnitudes ZL | VL | VOC Z L Z Th ZL or V L VOC Z L Z Th Similarly And VL IL ZL I L VL Z L I L I L VL Z L But VL VL I L VL Z L VL I L Z L Engineering-43: Engineering Circuit Analysis 32 Also by Euler ZL RL jX L tan Z L X L RL Now a Useful Trig ID cos 1 1 tan 2 VL I L tan tan VL I L But tan VL I L tan Z L X L RL Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Max Avg Power Transfer cont.3 ReArrange Trig ID to Find 1 cos VL I L 1 X L RL 2 cos VL I L RL RL2 X L2 Again the Power Eqn 1 PL VL I L cos vL iL 2 Substitute to Find ZL V OC Z L Z Th 1 ZL RL PL VOC 2 2 2 Z L Z Th Z RL X L L Engineering-43: Engineering Circuit Analysis 33 Or 2 1 Z L VOC PL 2 Z L Z Th 2 RL RL2 X L2 And Z L Z Th ( RL RTh ) j ( X L X Th ) Z L Z Th 2 ( RL RTh ) 2 ( X L X Th ) 2 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Max Avg Power Transfer cont.4 Finally The Power Eqn ReStated 2 VOC RL 1 PL 2 ( RL RTh ) 2 ( X L X Th ) 2 Now To Maximize the Power Transfer, Set the Partial Derivatives to 0 PL 0 X L X L X Th PL R R L Th 0 RL Engineering-43: Engineering Circuit Analysis 34 at LAST The Optimized opt * Load Z L ZTH • The Complex Conjugate And the Power Transferred at Optimum 2 1 VOC max PL 2 4 RTh Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Max Avg Power Transfer cont.5 Check 2 VOC RL 1 PL 2 ( RL RTh ) 2 ( X L X Th ) 2 At the Max Condition PLmax 2 VOC RTH 1 2 ( RTh RTh ) 2 ( X Th X Th ) 2 PLmax 2 2 2 RTh RTh VOC 1 VOC 1 VOC 2 2 2 2 (2 RTh ) 0 2 4 RTh 8 RTh PLmax 2 VOC 8 RTh Engineering-43: Engineering Circuit Analysis 35 PL 0 X L X L X Th PL 0 RL RTh RL Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Maximum Power Xfer Find ZL for the Maximum Power Xfer And The Max Pwr Xfer 2 PLmax VOC 8RTh Need to find • VOC = VTh • RTh Recall The Max Power Criteria opt * Z L Z Th Engineering-43: Engineering Circuit Analysis 36 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Max Pwr Xfer cont. Remove Load and Find VOC by Loop Current And by Ohm’s Law in the Frequency Domain VOC j 2I 120 j 2 9(1 j ) 12 j18 6 18.974V71.56 VOC I Find ZTh by Source DeActivation (Zeroing) Use KVL on Single-Loop 240 120 j 2I 2I 0 36(2 j 2) I 9(1 j ) 12.73 45 8 Engineering-43: Engineering Circuit Analysis 37 Z Th Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx ASIDE: Complex Alegebra 240 120 j 2I 2I 0 I2 j 2 240 120 36 36 I 2 j 2 36 2 j 2 I 2 j 2 2 j 2 362 j 2 36 21 j 721 j I 2 91 j 2 2 2 44 8 Engineering-43: Engineering Circuit Analysis 38 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Max Pwr Xfer cont.2 Then ZTh 4j Z Th j 2 (2 || j 2) j 2 2 j2 or Z Th 4 8 j8 1 j 2 j2 8 Z Th Taking The Conjugate Z opt L 1 j Then The Power Transferred to this Load Engineering-43: Engineering Circuit Analysis 39 max L P V 2 OC 8 RTh 18.974V 2 8 1 45 W 360 W 8 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor Consider a Complex Current Thru a Complex Impedance Load I M i Z L V M v The Current and Load-Voltage Phasors (Vectors) Can Be Plotted on the Complex Plane Engineering-43: Engineering Circuit Analysis 40 V v z I i By Ohm & Euler V ZI V Z I v z i or z v i in the Electrical Power Industry 𝜃𝑍 is the Power Factor Angle, or Simply the Phase Angle Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor cont The Phase Angle Can Be Positive or Negative Depending on the Nature of the Load (capacitiv e) V VM 0 (inductive ) V is the BaseLine I V Z 0 Z Z Engineering-43: Engineering Circuit Analysis 41 • Large Electric Motors are Essentially Inductors Now Recall The AVERAGE Power Eqn 90 z 0 current leads 0 z 90 current lags Typical Industrial Case is the INDUCTIVE Load 1 V I P VM I M cos( v i ) M M cos Z 2 2 2 P Vrms I rms cos( v i ) Vrms I rms cos Z Measuring the Load with an AC DMM yields • Vrms • Irms Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor cont.2 The Product of the DMM Measurements is the APPARENT Power Papparent Vrms I rms The Apparent Power is NOT the Actual Power, and is thus NOT stated in Watts. • Apparent Power Units = VA or kVA Engineering-43: Engineering Circuit Analysis 42 Now Define the Power Factor for the Load Pactual V rmsI rms cos( v i ) pf Papparent V rmsI rms pf 1 cos( v i ) cos z and Pactual V rmsI rms pf Some Load Types pf z 0 90 pure capacitive 0 pf 1 90 z 0 leading or capacitive 1 0 resistive 0 pf 1 0 z 90 lagging or inductive 0 90 pure inductive Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx pf – Why do We Care? Consider this case • Vrms = 460 V • Irms = 200A • pf = 1.5% Then • Papparent = 92kVA • Pactual =1.4 kW This Load requires The Same Power as a Hair Dryer or Toaster Engineering-43: Engineering Circuit Analysis 43 However, Despite the low power levels, The WIRES and CIRCUIT BREAKERS that feed this small Load must be Sized for 200A! • The Wires would be nearly an INCH in Diameter Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Power Factor The Local Power Company Services this Large Industrial Load 0.1 510V0 Power company 100 kW I lags V Find Irms by Pwr Factor P Vrms I rms pf I rms P pf Vrms I rms 100kW 0.707 480Vrms Engineering-43: Engineering Circuit Analysis 44 Then the I2R Loses in the 100 mΩ line 2 P Rline 1 2 Plosses I rms Rline 2 2 Vrms pf 1010 0.1 1 Plosses ( pf 0.707) W 2 2 480 0.707 4.34 kW 2 Improving the pf to 94% 1010 0.1 1 Plosses ( pf 0.94) W 480 2 0.94 2 4.34kW 1.13 Psaved 0.87 4.34kW 3.77kW Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Power Factor cont For This Ckt The Effect of the Power Factor on Line Losses 0.1 510V0 100 kW Engineering-43: Engineering Circuit Analysis 45 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Complex Power Consider a general Ckt with an Impedance Ld Mathematically S Vrms v I rms i * S Vrms v I rms i S Vrms I rms v i recall : v i Z For this Situation Define the Complex Power for the Load: SV I * rms rms Engineering-43: Engineering Circuit Analysis 46 Converting to Rectangular Notation S Vrms I rms cos( v i ) j Vrms I rms sin( v i ) P Active Power Q Reactive Power Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Complex Power cont Thus S in Shorthand S P jQ Alternatively, Reconsider the General Sinusoidal Circuit S & Q are NOT Actual Power, and Thus all Terms are given Non-Watt Units • S→ Volt-Amps (VA) • Q → Volt-Amps, Reactive (VAR) P is Actual Power and hence has Units of W Engineering-43: Engineering Circuit Analysis 47 First: U vs. Urms U U M and U rms U M 2 U rms U rms Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Complex Power cont.2 Now in the General Ckt By Ohm’s Law Z Vrms I rms Vrms v Vrms Z v i I rms i I rms and Vrms I rms Z Z so ReZ j ImZ Z cos v i jZ sin v i In the Last Expression Equate the REAL and Imaginary Parts Engineering-43: Engineering Circuit Analysis 48 ReZ cos v i Z ImZ sin v i Z And Again by Ohm I rms Vrms Z I rms Vrms v V rms i Z v i Z So I rms Vrms Z Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Complex Power cont.3 And by Complex Power Definition S P jQ then P ReS Vrms I rms cos v i Q ImS Vrms I rms sin v i Using the Previous Results for P ReZ P ReS Vrms I rms Z Vrms I rms ReZ Z 2 2 P I rms ReZ I rms R Engineering-43: Engineering Circuit Analysis 49 Similarly for Q QI 2 rms 2 Im Z I rms X So Finally the Alternative Expression for S SI 2 rms Z Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Complex Power Triangle The Expressions for S S P jQ SI 2 rms Z Plotting S in the Complex Plane From The Complex Power “Triangle” Observe Q tan v i P Note also That Complex Power is CONSERVED 2 Stot S k I rms ,k Zk Engineering-43: Engineering Circuit Analysis 50 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Complex Power For the Circuit At Right • • • • • Zline =0.09 Ω + j0.3 Ω Pload = 20 kW Vload = 2200° pf = 80%, lagging f = 60 Hz → ω = 377s−1 Lagging pf → Inductive inductive From the Actual Power P ReS | S | cos( v i ) S pf Thus P 20kW SL 25kVA pf 0.8 And Q from Pwr Triangle Q 2 S L P 2 Q 15 kVAR 2 capacitive Engineering-43: Engineering Circuit Analysis 51 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Complex Power cont Then SL S L 20 j15kVA 25kVA36.87 Recall the S Mathematical Definition S L VL I*L Note also that [U*]* = U In the S Definition, Isolating the Load Current and then Conjugating Both Sides Engineering-43: Engineering Circuit Analysis 52 * S 25kVA36.87 IL L VL 220V0 I L 113.64 36.86( A) Alternatively 20,000 j15,000 IL 220 I L 90.91 j 68.18( A) * Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx * Example - Complex Pwr cont.2 Now Determine VS 4.86 VS Vline VL VS (0.09 j 0.3)I L 2200 VS (0.09 j 0.3)(90.91 j 68.18) 220(V ) Then VS VS 28.63 j 21.14 220 VS 248.63 j 21.14 VS 249.53Vrms4.86 To find the Src Power Factor, Draw the I & V Phasor Diagram Engineering-43: Engineering Circuit Analysis 53 IL VS 36.86 Then The Phase Angle v i 4.86 36.86 41.72 I Lags V Inductive Load and also pf cos v i cos 41.72 pf 0.7464 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Complex Power kVAR 0.1 For the Circuit At Right, Determine j 0.25 40kW pf 0.84 lagging • Real & Reactive Power losses in the Line • Real & Reactive Power at the Source From the Actual Power Lagging pf → Inductive P ReS | S | cos( v i ) S pf inductive Thus P 40kW SL 47.62kVA pf 0.84 And by S Definition capacitive Engineering-43: Engineering Circuit Analysis 54 S VI * I L SL 216.45( A) rms VL Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Complex kVAR cont. 0.1 Also from the S Relation & Pythagorus j 0.25 40kW pf 0.84 lagging | Q L | | S L |2 P 2 25,839(VAR) Now the Power Factor Angle Then for Line Loses Sline VlineI*line (ZlineI L )I*L I Lagging V pf = cos(θv − θi); hence v i acos0.84 32.86 Engineering-43: Engineering Circuit Analysis 55 ZlineI L2 Quantitatively Sline (0.1 j 0.25)( 216.45) 2 Sline 4685 j11713 VA Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example - Complex kVAR cont.2 0.1 Find Power Supplied by Conservation of Complex Power j 0.25 40kW pf 0.84 lagging S Supplied S line S Load In this Case Then to Summarize the S Sup 4.685 j11.713 40 j 25.839 Answer 4.685 40 j 11.713 25.839 44.685 j 37.552 kVA 58.3740.04 kVA Engineering-43: Engineering Circuit Analysis 56 • • • • Pline = 4.685 kW Qline = 11.713 kVAR PS = 44.685 kW QS = 37.552 kVAR Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor Correction As Noted Earlier, Most Industrial Electrical Power Loads are Inductive • The Inductive Component is Typically Associated with Motors To Arrive at the Power Factor Correction Strategy Consider A Schematic of a typical Industrial Load The Motor-Related Lagging Power Factor Can Result in Large Line Losses The Line-Losses can Be Reduced by Power Factor Correction Engineering-43: Engineering Circuit Analysis 57 Intentionally Added Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor Correction cont. Prior to The Addition of the Capacitor S old Pold jQold | S old | old Qold pf old cos old cos arctan Pold After Addition of the For The Capacitive Capacitor Load V I C L VL jC VL L C90 ZC I C CVL QC I 2 C CVL 2 ImZ C C CVL2 Engineering-43: Engineering Circuit Analysis 58 S new S old S C Pold jQold jQC | S new | new pf new cos( new ) Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Power Factor Correction cont.2 Find θnew • Cap is a Purely REACTIVE Load tan new Qold QC Qnew Pold Pold The Vector Plot Below Shows Power Factor Correction Strategy Use Trig ID to find QC to give desired θnew cos QL Qnew L-QC P Engineering-43: Engineering Circuit Analysis 59 QC 1 1 tan 2 Qold QC 1 1 2 Pold cos new Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Trig ID Digression Start with the ID cos 1 1 tan 2 Solve for tan 1 tan 1 2 cos 2 Recall tanθnew Qold QC tan new Pold Substituting Engineering-43: Engineering Circuit Analysis 60 Qold QC 1 1 2 Pold cos new Or Qold QC cos 2 new 1 2 Pold cos new cos 2 new 1 cos 2 new 1 cos 2 new 2 cos new cos new But: cosθnew = pfnew 1 pf Qold QC Pold pf new 2 new Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example pf Correction Kayak Centrifugal Injection-Molding Power Analysis Roto-molding process • Improve Power Factor to 95% Find Sold P ReS S cos(v i ) S pf Sold pf 0.8 lagging Adding A Cap Does NOT Change P • Use Trig ID to Find Tan(new) P 50kW 62.5kVA 2 1 pf Q new pf 0.80 cos new 0.95 tan new new 0.329 P Now Qold pf new And by S Relation | Qold | | Sold | P 37.5(kVAR) 2 2 Engineering-43: Engineering Circuit Analysis 61 50kW ,VL 2200rms Qnew Qnew 0.329 P 16.43kVAR P Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example pf Correction cont Then the Needed QC QC Qold Qnew 37.5 16.43 QC 21.07kVA Recall The Expression for QC Roto-molding process 50kW ,VL 2200rms pf 0.8 lagging QC | VL || I C | VL2C Then C from QC QC 21.07 103 C 2 VL (2 60) (220) 2 C 0.001155( F ) 1155 F Engineering-43: Engineering Circuit Analysis 62 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx All Done for Today Power Factor Correction Engineering-43: Engineering Circuit Analysis 63 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx WhiteBoard Work Let’s Work Problem similar to P5.78 • Determine at the input SOURCE – Voltage & Current – Complex Power – Δθ & pf 60 kVA Engineering-43: Engineering Circuit Analysis 64 220Vrms 19 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 65 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 66 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 67 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 68 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 69 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 70 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 71 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 72 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 73 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 74 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 75 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 76 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 77 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx WhiteBoard Work Let’s Work This Nice Problem Ix j1 2 -j2 ZL 120 V 2Ix Figure P 9.32 Find ZL for Pav,max, & the value of Pav,max Engineering-43: Engineering Circuit Analysis 78 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example V1 Use Nodal Analysis to Find VO The KCL at Node-1 V1 1230 V1 V1 V1 VO 0 2 1 j2 j Now KCL At VO VO V1 VO 0 j 1 V1 1 j VO Multiply Node-1 KCL by 2j to Obtain Engineering-43: Engineering Circuit Analysis 79 j (V1 1230) j 2V1 V1 2(V1 VO ) 0 Subbing for V1 Yields 2VO (1 2 2 j j )(1 j )VO 12 j30 Factoring out VO Yields (2 (1 3 j )(1 j )) VO 1901230 Isolating VO 12120 12120 VO 44j 5.65745 VO 2.121V75 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Alternative This Time Use Thevenin to Find VO Take Cap & Res in Series as the Load Deactivate V-Src to Find ZTH ZTH ZTH ZTH 4 j 3 2 || 1 || j 2 2 3 j 2 j4 j 42 j 6 2 j6 22 62 0.6 j 0.2 Engineering-43: Engineering Circuit Analysis 80 Find VOC by V-Divider 1 || j 2 1230 2 (1 || j 2) j2 1230 2(1 2 j ) 2 j VOC VOC 24120 12120 26j 1 3 j 3.795V48.435 VOC VOC Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Example Alternative cont. Now Apply the Thevenin Equivalent Circuit to the Load Calculate VO By V-Divider VO ZTH j1 ZTH 0 .6 j 0 . 2 VOC + - 1 1 VOC 1 j 1 Same as Before VOC 0.6 j 0.2 1 j 1 VO VOC 1.6 j 0.8 VO 0.55926.565 3.795V48.435 VO VO 2.121V75.00 Engineering-43: Engineering Circuit Analysis 81 V0 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx P5.57 Graphics Engineering-43: Engineering Circuit Analysis 82 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx P5.81 Graphics Engineering-43: Engineering Circuit Analysis 83 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx HP 48G+ : Using Memory Purple LEFT Arrow Engineering-43: Engineering Circuit Analysis 84 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx VS Engineering-43: Engineering Circuit Analysis 85 460 Vrms I rms Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx Engineering-43: Engineering Circuit Analysis 86 Bruce Mayer, PE [email protected] • ENGR-43_Lec-05c_Thevenin_AC_Power.pptx