Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CHAPTER 8: Applications of Trigonometry 8.1 8.2 8.3 8.4 8.5 8.6 The Law of Sines The Law of Cosines Complex Numbers: Trigonometric Form Polar Coordinates and Graphs Vectors and Applications Vector Operations Copyright © 2009 Pearson Education, Inc. 8.3 Complex Numbers: Trigonometric Form Graph complex numbers. Given a complex number in standard form, find trigonometric, or polar, notation; and given a complex number in trigonometric form, find standard form. Use trigonometric notation to multiply and divide complex numbers. Use DeMoivre’s theorem to raise a complex number to powers. Find the nth roots of a complex number. Copyright © 2009 Pearson Education, Inc. Graphical Representation Just as real numbers can be graphed on a line, complex numbers can be graphed on a plane. We graph a complex number a + bi in the same way that we graph an ordered pair of real numbers (a, b). However, in place of an x-axis,we have a real axis, and in place of a y-axis, we have an imaginary axis. Horizontal distances correspond to the real part of a number. Vertical distances correspond to the imaginary part. Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 4 Example Graph each of the following complex numbers. a) 3 + 2i b) –4 – 5i c) –3i d) –1 + 3i Solution: Copyright © 2009 Pearson Education, Inc. e) 2 Slide 8.3 - 5 Absolute Value The absolute value of a complex number a + bi is a bi a 2 b 2 . Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 6 Example Find the absolute value of each of the following. 4 b) 2 i a) 3 4i c) i 5 Solution: a) 3 4i 3 4 2 b) 2 i 2 9 16 25 5 2 1 2 2 4 1 5 2 2 4 4 4 4 4 2 c) i 0 i 0 5 5 5 5 5 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 7 Trigonometric Notation If we let be an angle in standard position whose terminal side passes through the point (a, b), then a cos , or a r cos r b sin , or b r sin r Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 8 Trigonometric Notation Trigonometric Notation for Complex Numbers a bi r cos i sin r is called the absolute value of a + bi. is called the argument of a + bi. This notation is also called polar notation. To find trigonometric notation for a complex number given in standard notation a + bi, we must find r and determine the angle for which sin = b/r and cos = a/r. Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 9 Example Find trigonometric notation for each of the following complex numbers. a) 1 i b) 3 i Solution: a) Note that a = 1 and b = 1. Then r a 2 b 2 12 12 2 1 b 2 sin r 2 2 1 a 2 cos r 2 2 Copyright © 2009 Pearson Education, Inc. in Q I, = π/4 or 45º 1 i 2 cos i sin 4 4 or 1 i 2 cos 45º i sin 45º Slide 8.3 - 10 Example Solution continued b) a = 3 and b = –1. Then r a b 2 2 3 1 b 1 1 sin r 2 2 a 3 3 cos 2 r 2 Copyright © 2009 Pearson Education, Inc. 2 2 2 in Q IV, = 11π/6 or 330º 11 11 3 i 2 cos i sin 6 6 or 3 i 2 cos 330º i sin 330º Slide 8.3 - 11 Example Find standard notation, a + bi, for each of the following complex numbers. 7 7 b) 8 cos i sin a) 2 cos120º i sin120º 4 4 Solution: a) 2 cos120º i sin120º 2 cos120º 2sin120º i 1 a 2cos120º 2 2 1 3 b 2sin120º 2 3 2 2 cos120º i sin120º 1 3i Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 12 Example Solution continued b) 7 7 7 7 8 sin i 8 cos i sin 8 cos 4 4 4 4 2 7 a 8 cos 8 2 4 2 2 7 2 b 8 sin i 8 4 2 7 7 8 cos i sin 2 2i 4 4 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 13 Complex Numbers: Multiplication Complex Numbers: Multiplication For any complex numbers r1(cos 1 + i sin 1) and, r1(cos 1 + i sin 1), r1 cos1 i sin 1 r2 cos 2 i sin 2 r1r2 cos 1 2 i sin 1 2 . Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 14 Example Convert to trigonometric notation and multiply. 1 i 3i Solution: First find trigonometric notation, then multiply. 1 i 2 cos 45º i sin 45º 3 i 2 cos 330º i sin 330º 2 cos 45º i sin 45º 2 cos 330º i sin 330º 2 2 cos 45º 330º i sin 45º 330º 2 2 cos 375º i sin 375º 2 2 cos15º i sin15º Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 15 Complex Numbers: Division Complex Numbers: Division For any complex numbers r1(cos 1 + i sin 1) and, r1(cos 1 + i sin 1), r2 ≠ 0, r1 cos1 i sin1 r1 cos 1 2 i sin 1 2 . r2 cos 2 i sin 2 r2 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 16 Example 3 3 i sin by 4 cos i sin Divide 2 cos 2 2 2 2 and express the answer in standard notation. Solution: 3 3 2 cos i sin 2 3 3 2 2 cos i sin 2 2 4 2 2 4 cos i sin 2 2 1 cos i sin 2 1 1 1 i 0 2 2 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 17 Powers of Complex Numbers DeMoivre’s Theorem For any complex number r(cos + i sin ) and any natural number n, r cos i sin r n cos n i sin n . n Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 18 Example Find each of the following. a) 1 i 9 b) 3 i 10 Solution: First find trigonometric notation, then raise to the power. 1 i 1 i 9 2 cos 45º i sin 45º 2 cos 45º i sin 45º 9 2 cos9 45º i sin 9 45º 2 9 92 16 cos 405º i sin 405º 2 cos 45º i sin 45º 16 16 16i Copyright © 2009 Pearson Education, Inc. 2 2 2 i 2 2 Slide 8.3 - 19 Example Solution continued b) 3 i 10 First find trigonometric notation, then raise to the power. 3 i 2 cos 330º i sin 330º 3 i 2 cos 330º i sin 330º 10 10 210 cos 3300º i sin 3300º 1024 cos60º i sin 60º 1 3 1024 i 512 512 3i 2 2 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 20 Roots of Complex Numbers Roots of Complex Numbers The nth roots of a complex number r(cos + i sin ) r ≠ 0, are given by r 1n 360º 360º cos n k n i sin n k n , where k = 0, 1, 2, …, n –1. Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 21 Example Find the cube roots of 1. Then locate them on a graph. Solution: First find trigonometric notation, then raise to the power. 1 1cos0º i sin 0º Then n = 3, 1/n = 1/3, and k = 0, 1, 2; so, 1cos 0º i sin 0º 13 360º 360º 0º 0º 1 cos k i sin k , k 0,1,2 3 3 3 3 13 Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 22 Example Solution continued The roots are 1cos0º i sin 0º 1 1 3 i 1cos120º i sin120º 2 2 1 3 i 1cos240º i sin 240º 2 2 The graphs of the cube roots lie equally spaced about a circle of radius 1. The roots are 360º/3, or 120º apart, as shown on the next slide. Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 23 Example Solution continued Copyright © 2009 Pearson Education, Inc. Slide 8.3 - 24