Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
A Unified Model for the ZVS DC-DC Converters With Active Clamp by N.Lakshminarasamma, B. Swaminathan, Prof V. Ramanarayanan, IISC Department of Electrical Engineering Indian Institute of Science Bangalore Linear Regulator (1-K)Vg Vg + - R KVg Series Regulator Efficiency = K Best dynamic performance Very good regulation Poor efficiency and bulky Switching Regulator TON Vg TOFF + - Switching Voltage Regulator Ideal losses zero Output discontinuous Smoothing filter needed R Typical Converter Vg S C L Vo Switches control power flow Reactive elements smoothen power flow Both are non-dissipative elements Classification of SMPS SWITCHED MODE POWER CONVERTERS HARD SWITCHED POWER CONVERTERS Resonant Load Conve rters SOFT-SWITCHED POWER CON VER TERS Quasi-Resonant Conve rters Resonant Transition Conve rters Active Clamp Conve rters Hard Switching Converter P T1 T2 V I t I V t Soft Switching Converter V I OFF/ON Transient ZCS V t I I ZVS t ON/OFF Transient V Active Clamp ZVS Buck Converter CR CR V S1 + CR CR DC CC S2 Throw1 LR S LR 1 Pole I D Clamp Capacitor Clamp Switch s2 D Interval T1 - Zero-voltage Turn-on CR CR D2 D1 VC LR i(t) i(0) = -I* S1 V S2 i(T1) = I V i(t) I t LR * I D Vo I I* T1 LR V T1 I* I N 1 Ts I IN - Normalized current Interval T2 - Resonant Commutation v(t) CR v(0) = V v(T2) = 0 CR D2 D1 VC LR S1 V D CR t sin LR L R CR v(t) V cos I i(0) = I S2 i(t) I V i(t) t L R CR Vo i(T2) I V v(T2) 0 CR LR T2 L R CR 2 f T2 fS S Ts 2 2 f R 4 f R Interval T3 - Power-on Duration CR CR D2 D1 VC LR i(t) I S1 V S2 D Vo S1 turned off at end of T3 and CR almost instantly charges to V+VC. CR i(t) I V LR T1 T2 T3 DTs T3 T1 T2 D Ts Ts Ts Interval T4 – Assisted Turn-off CR i(T4) = I CR D2 D1 VC LR i(t) I S1 V S2 i(t) I V i(T4) I CR V VC t LR LR Vo D T4 V CR LR V VC LR T4 1 fS Ts 1 2 f R VC V Interval T5 – Resonant Commutation CR v(0) = 0 CR D2 D1 VC LR i(t) I S1 V S2 v(T5) = V i(t) I V VC CR t sin LR L R CR t v(t) V VC 1 cos L C R R D Vo I(T5) I V 1 V ( T5 ) = V CR LR T5 LRCR cos 1 T5 fS cos1 Ts 2 fR 1 Interval T6 – Power Freewheeling Duration CR CR D2 D1 VC LR i(t) I S1 V S2 D Vo At the end of T6 interval current i(t) has reversed and Flows through MOSFET of S2. CR almost instantly discharges to zero. Now S1 may be switched on with zero voltage across the same. Theoretical Waveforms Resonant Inductor LR Current I I(T5) t I* kI(T5) T1 T2 T3 T4 T5 T6 I Active Switch S1 I Freewheel Diode t Vg Pole Voltage Vo t Clamp Ratio and Clamp Voltage Resonant Inductor LR Current I I(T5) t I* kI(T5) T1 T2 T3 T4 I T5 T6 Clamp Capacitor Current t kI(T5) I T5 V C R k2 1 I (T5)T6 VC A k 1 LR I(T5) T6 k 1 Ts / T6 k 1 1 1 T6 2 f R f S 2 fR Steady State Equivalent Circuit Model (1+k)LR/Ts 1: D Steady State Equivalent Circuit for Active Clamp Buck converter Vo L I(1 k) D R Vg Vg Ts Vo DVg L R I(1 k) Ts Equivalent Circuit Models of Other Converters Rd Rd 1-D: 1 1:D 1-D: 1 Rd1 Rd2 1-D: 1 1: D Equivalent circuits of the active clamped ZVS boost, buck-boost and cuk converters Spread Sheet Design ..\pesc04\work\spreadsheetdesign.xls Table 1 : Spreadsheet Organisation for the Steady-state Performance Solution Inductor Current Throw Voltage Resonant Inductor Resonant Capacitor Resonant Freq r/s Resonant Freq Hz Switching Freq Switching Period Switch Initial Current Clamp Initial Voltage Current after T6 Clamp Voltage Duty Ratio S1 ON Time Dbar Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Current after T5 Current Factor Pole Voltage Normal Current Clamp Ratio Voltage Ratio I 1.95 2.4 2.8 3.2 3.5 50 50 50 50 50 LR 5.00E-06 5.00E-06 5.00E-06 5.00E-06 5.00E-06 CR 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 wR 1.41E+07 1.41E+07 1.41E+07 1.41E+07 1.41E+07 fR 2.22E+07 2.22E+07 2.22E+07 2.22E+07 2.22E+07 0.20 fS 2.50E+05 2.50E+05 2.50E+05 2.50E+05 2.50E+05 0.15 Ts 4.00E-06 4.00E-06 4.00E-06 4.00E-06 4.00E-06 kI(T 5) 1.40 1.87 2.30 2.72 3.03 VC 4.61 6.23 7.66 9.08 10.15 kI(T 5) 1.40 1.87 2.30 2.72 3.03 VC 4.61 6.23 7.66 9.08 10.15 V D DT s 1-D 0.259 0.259 0.259 0.259 0.259 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 0.741 0.741 0.741 0.741 0.741 T1 3.35E-07 4.27E-07 5.10E-07 5.92E-07 6.53E-07 T2 1.11E-07 1.11E-07 1.11E-07 1.11E-07 1.11E-07 T3 5.90E-07 4.98E-07 4.15E-07 3.33E-07 2.72E-07 T4 6.47E-08 6.29E-08 6.13E-08 5.98E-08 5.88E-08 T5 1.05E-07 1.03E-07 1.02E-07 1.00E-07 9.91E-08 T6 2.79E-06 2.80E-06 2.80E-06 2.80E-06 2.81E-06 I(T 5) 1.18 1.61 1.99 2.37 2.66 k 1.18 1.16 1.15 1.14 1.14 Vp 9.65 8.51 7.48 6.46 5.70 IN 0.05 0.06 0.07 0.08 0.09 VC/V 0.09 0.12 0.15 0.18 0.20 V/Vg 0.19 0.17 0.15 0.13 0.11 D=0.259 D=0.332 D=0.436 V/Vg 0.30 0.25 0.10 0.05 0.00 0.00 0.05 In 0.10 Conversion Ratio (In vs V/Vg) D=0.259 D=0.332 D=0.436 Vc/Vg 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.0000 0.0500 In 0.1000 Clam p Ratio ( In vs Vc/Vg) C onve rsion Ratio and C lamp Ratio as a function of Normaliz e d C urre nt Steady State Definitions Of Base Voltages And Currents Buck Boost Buckboost Cuk v Vg Vo Vg+Vo Vg+Vo I Io Ig IL Ig + IL Rd M (1 k)L R (1 k)L R Ts Ts D (1 k) I N 1 1 D (1 k)I N (1 k)L R Ts D (1 k)I N 1 D (1 k)I N (1 k)L R (1 k)L R ; (1 D) Ts D Ts D (1 k)I N 1 D (1 k)I N Dynamic Model Of Active Clamp Buck Converter Perturbation of the nonlinear circuit averaged model about a quiescent operating point. L ˆ Vg +V g + + - D+dˆ I+iˆ (1+k)LR TS C + - D+dˆ Vg +Vˆ g Rc 1:D d̂Vg L D -+ (1+k)LR TS C V̂g - + + - R d̂I Rc 1:D Small signal ac model of active clamp buck converter Simulated Active Clamp Buck Converter 1n Output power = 60 watts MUR1620CT 1n 7u Input voltage = 50 volts 150u IRF250 S1 5u 110u G1 50V 12 G2 IRF250 MUR1620CT 0 Output voltage = 20 volts Switching frequency = 250 KHz Resonant Inductor Current Waveform Clamp Capacitor Current Waveform Steady State Performance Of Active Clamp Buck Converter EXPERIMENTAL RESULTS D=0.259 D=0.332 D=0.436 Conversion ratio V/Vg V/Vg SIMULATED RESULTS 0.50 0.50 0.40 0.40 0.30 0.30 0.20 0.20 0.10 Vc/Vg 0.05 0.10 0.15 IN - Am ps D=0.259 D=0.332 D=0.436 Clam p Ratio 0.00 0.00 Vc/Vg 0.10 0.00 0.00 0.60 0.60 0.50 0.50 0.40 0.40 0.30 0.30 0.20 0.20 0.10 0.10 0.00 0.00 D=0.259 D=0.332 D=0.436 Conversion Ratio 0.05 0.10 0.15 In- Am ps 0.00 0.00 0.05 0.10 D=0.259 D=0.332 D=0.436 Clam p Ratio 0.05 0.15 In- Am ps 0.10 0.15 In- Am ps Experimental Waveforms Of Active Clamp Buck Converter Vgs and Vds of S1 showing ZVS; Vgs and Vds of S2 showing ZVS Experimental Waveforms Of Active Clamp Buck Converter Pole voltage and Inductor current waveforms; Pole voltage and Clamp capacitor current waveforms Dynamic Performance Of Active Clamp Buck Converter Measured output impedance of Hard-switched buck converter and Active clamp buck converter Conclusions – Active Clamp Converters Derived from Hard-Switched Converters by the addition of few Resonant elements following the simple rule. Circuit equations governing these sub-intervals are identical when expressed in terms of pole current; throw voltage and freewheeling resonant circuit voltage (I, V, and VC). Steady state and Dynamic equivalent circuits are obtained from this idealized analysis. The resonant sub-interval introduces lossless damping in the converter dynamics. Advantages – Active Clamp Converter High Efficiency - ZVS Simple Dynamic Model Wide Variety of Topologies Thanks