Download File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Over Lesson 6–3
Determine whether the
quadrilateral is a parallelogram.
A. Yes, all sides are congruent.
B. Yes, all angles are congruent.
C. Yes, diagonals bisect each
other.
D. No, diagonals are not
congruent.
Over Lesson 6–3
Determine whether the
quadrilateral is a parallelogram.
A. Yes, both pairs of opposite
angles are congruent.
B. Yes, diagonals are congruent.
C. No, all angles are not
congruent.
D. No, side lengths are not given.
Over Lesson 6–3
Use the Distance Formula to determine if
A(3, 7), B(9, 10), C(10, 6), D(4, 3) are the vertices
of a parallelogram.
A. yes
B. no
Over Lesson 6–3
Use the Slope Formula to determine if
R(2, 3), S(–1, 2), T(–1, –2), U(2, –2) are the vertices
of a parallelogram.
A. yes
B. no
Over Lesson 6–3
Given that QRST is a parallelogram, which
statement is true?
A. mS = 105
B. mT = 105
___
___
___
___
C. QT  ST
D. QT  QS
You used properties of parallelograms and
determined whether quadrilaterals were
parallelograms.
• Recognize and apply properties of
rectangles.
• Determine whether parallelograms are
rectangles.
• rectangle
Use Properties of Rectangles
CONSTRUCTION A rectangular garden gate is
reinforced with diagonal braces to prevent it from
sagging. If JK = 12 feet, and LN = 6.5 feet, find KM.
Use Properties of Rectangles
Since JKLM is a rectangle, it is a parallelogram. The
diagonals of a parallelogram bisect each other, so
LN = JN.
JN + LN = JL
Segment Addition
LN + LN = JL
Substitution
2LN = JL
2(6.5) = JL
13 = JL
Simplify.
Substitution
Simplify.
Use Properties of Rectangles
JL  KM
If a is a rectangle,
diagonals are .
JL = KM
Definition of congruence
13 = KM
Substitution
Answer: KM = 13 feet
Quadrilateral EFGH is a rectangle. If GH = 6 feet
and FH = 15 feet, find GJ.
A. 3 feet
B. 7.5 feet
C. 9 feet
D. 12 feet
Use Properties of Rectangles and Algebra
Quadrilateral RSTU is a rectangle. If mRTU =
8x + 4 and mSUR = 3x – 2, find x.
Use Properties of Rectangles and Algebra
Since RSTU is a rectangle, it has four right angles.
So, mTUR = 90. The diagonals of a rectangle bisect
each other and are congruent, so PT  PU. Since
triangle PTU is isosceles, the base angles are
congruent, so RTU  SUT and mRTU = mSUT.
mSUT + mSUR = 90
Angle Addition
mRTU + mSUR = 90
Substitution
8x + 4 + 3x – 2 = 90
Substitution
11x + 2 = 90
Add like terms.
Use Properties of Rectangles and Algebra
11x = 88
x = 8
Answer: x = 8
Subtract 2 from each
side.
Divide each side by 11.
Quadrilateral EFGH is a rectangle. If mFGE =
6x – 5 and mHFE = 4x – 5, find x.
A. x = 1
B. x = 3
C. x = 5
D. x = 10
Max is building a swimming pool in his
backyard. He measures the length and width
of the pool so that opposite sides are
parallel. He also measures the diagonals of
the pool to make sure that they are
congruent. How does he know that the
measure of each corner is 90?
A. Since opp. sides are ||, STUR
must be a rectangle.
B.
Since opp. sides are , STUR
must be a rectangle.
C.
Since diagonals of the are ,
STUR must be a rectangle.
D.
STUR is not a rectangle.
Rectangles and Coordinate Geometry
Quadrilateral JKLM has vertices J(–2, 3), K(1, 4),
L(3, –2), and M(0, –3). Determine whether JKLM is
a rectangle using the Distance Formula.
Step 1
Use the Distance
Formula to determine
whether JKLM is a
parallelogram by
determining if opposite
sides are congruent.
Rectangles and Coordinate Geometry
Since opposite sides of a quadrilateral have the same
measure, they are congruent. So, quadrilateral JKLM
is a parallelogram.
Rectangles and Coordinate Geometry
Step 2
Determine whether the diagonals of
are congruent.
JKLM
Answer: Since the diagonals have the same
measure, they are congruent. So JKLM is
a rectangle.
Quadrilateral WXYZ has vertices W(–2, 1), X(–1, 3),
Y(3, 1), and Z(2, –1). Determine whether WXYZ is a
rectangle by using the Distance Formula.
A. yes
B. no
C. cannot be
determined
Quadrilateral WXYZ has vertices W(–2, 1), X(–1, 3),
Y(3, 1), and Z(2, –1). What are the lengths of
diagonals WY and XZ?
A.
B. 4
C. 5
D. 25
Related documents