Download EE 203 Lecture 12

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EE 330
Lecture 31
• Current Source Biasing
• Current Sources and Mirrors
Basic Amplifier Gain Table
Review from Last Lecture
VDD
VDD
VDD
RC
RC
B
Vin
C
E
Vout
B
VBB
RE
E
VEE
E
Vin
RE
VEE
CC/CD
BJT
MOS
-gmRC
2IDQRC
VEB
Vin
VSS
CE/CS
Rout
C
E
Vin
Rin
Vout
C
B
B

RC
Vout
C
Vout
AV
VDD

ICQRC
Vt
MOS
βVt
ICQ
BJT
gm
gm +gE
2IDQRE
ICQRE
2IDQRE +VEB ICQRE +Vt
rπ

CB/CG

rπ +βRE
V

β  t  RE 
 ICQ

-1
gm
RC
2IDQ
VEB
MOS
BJT
CEwRE/CSwRS
MOS
gmRC
2IDQRC
VEB
-
ICQRC
Vt
-1
gm
2IDQ
VEB
RC
RE
rπ +βRE
ICQ
Vt
RC
BJT

V

β  t  RE 
 ICQ

RC
ICQ
Vt
Can use these equations only when circuit is EXACTLY like that shown above !!
Review from Last Lecture
Basic Amplifier Characteristics Summary
VDD
RC
Vout
CE/CS
C
B
Vin
E
•
•
•
•
Large noninverting gain
Low input impedance
Moderate (or high) output impedance
Used more as current amplifier or, in conjunction with CD/CS to form
two-stage cascode
VEE
VDD
•
•
•
•
C
B
CC/CD
Vin
Vout
E
RE
VSS
VDD
RC
Vout
C
CB/CG
B
VBB
E
Vin
VDD
RC
CEwRE/
CSwRS
Vout
C
B
Vin
E
RE
VEE
Gain very close to +1 (little less)
High input impedance for BJT (high for MOS)
Low output impedance
Widely used as a buffer
•
•
•
•
Large noninverting gain
Low input impedance
Moderate (or high) output impedance
Used more as current amplifier or, in conjunction with CD/CS to form
two-stage cascode
•
•
•
•
Reasonably accurate but somewhat small gain (resistor ratio)
High input impedance
Moderate output impedance
Used when more accurate gain is required
Review from Last Lecture
High-gain BJT amplifier
-gm
AV 
g0  GC
VDD
RC
Vout
C
B
Vin
E
VEE
-gmRC
To make the gain large, it appears that all one needs
to do is make RC large !
AV
-ICQRC
-gmRC 
Vt
But Vt is fixed at approx 25mV and for good signal
swing, ICQRC<(VDD-VEE)/2
VDD  VEE
AV 
2Vt
If VDD-VEE=5V,
5V
AV 
 100
2  25mV
Gain is practically limited with this supply voltage to around 100
Review from Last Lecture
High-gain MOS amplifier
-gm
AV 
g0  GD
VDD
To make the gain large, it appears that all one needs
to do is make RD large !
RD
Vout
G
Vin
D
S
VSS
-gmRD
AV
-2IDQRD
-gmRD 
VEB
But VEB is practically limited to around 100mV and
for good signal swing, IDQRD<(VDD-VSS)/2
VDD  VSS
AV 
VEB
If VDD -VSS=5V and VEB=100mV,
5V
AV 
 50
100mV
Gain is practically limited with this supply voltage to around 100
Are these fundamental limits on the gain of the BJT and MOS Amplifiers?
Review from Last Lecture
High-gain amplifier
VDD
iB
VOUT
IB
VOUT
VIN
VIN
VIN
VBE
VOU
gπ
gmVBE
Q1
Q1
-gm
AV 
 
0
VEE
This gain is very large !
Too good to be true !
Need better model of MOS device!
Review from Last Lecture
High-gain amplifier
VDD
VOUT
iB
VOUT
IB
VOUT
VIN
VIN
Q1
VIN
Q1
VEE
This gain is very large (but realistic) !
But how can we make a current source?
VBE
gπ
gmVBE
g0
-gm
AV 
g0
AV 
-ICQ
V
 - AF
VtICQ /VAF
Vt
V
A V  - AF
Vt
200V
 8000
25mV
High-gain amplifier
VDD
AV
8000
IB
VOUT
VIN
Q1
VEE
How can we build the ideal current source?
What is the small-signal model of an actual current source?
Current Sources/Mirrors
VCC
I0
Q0
AE0
 VCC -0.6V 
R
If the base currents are neglected
Load
R
I0
I1
Q1
AE1
Current Sources/Mirrors
VCC
I0
Q0
AE0
 VCC -0.6V 
R
If the base currents are neglected
Load
R
I0
I0 =JS A E0e
I1
Q1
AE1
I1=JS AE1e
VBE0
Vt
VBE1
Vt
since VBE1=VBE2
 AE1 

 I0
 AE0 
Behaves as a current source !
I1
Actually termed a “sink” current since coming out of load
Current Sources/Mirrors
VCC
R
I0
Q0
AE0
I1
I1
Q1
AE1
Current Sink
•
•
•
•
Multiple Outputs Possible
Can be built at sourcing or sinking currents
Also useful as a current amplifier
MOS counterparts work very well and are not plagued by base current
Current Sources/Mirrors
I0
I1
Q0
AE0
Q1
I2
Q2
AE1
AE2
In
Qn
AEn
Multiple-Output Bipolar Current Sink
 AEk 
Ik = 
I0

 AE0 
Current Sources/Mirrors
VDD
Q0
AE0
I0
Q1
AE1
Q2
AE2
Qn
AEn
I1
I2
In
Multiple-Output Bipolar Current Source
 AEk 
Ik = 
I0

 AE0 
Current Sources/Mirrors
VDD
Qp0
AEp0
I0
Q0
AE0
Qp1
AEp1
Qp2
AEp2
Qpn
AEpn
Ip1
Ip2
Ipn
In0
Qn1
In1
Qn2
Inn
Qnn
AEn1
AEn2
AEnn
Multiple-Output Bipolar Current Source and Sink
Ink =?
Ipk =?
Current Sources/Mirrors
VDD
Qp0
AEp0
I0
Q0
AE0
Qp1
AEp1
Qp2
AEp2
Qpn
AEpn
Ip1
Ip2
Ipn
In0
Qn1
In1
Qn2
Inn
Qnn
AEn1
AEn2
AEnn
Multiple-Output Bipolar Current Source and Sink
 AEnk 
Ink = 
I0

 AE0 
 AEn1   AEpk 
Ipk = 

 I0

 AE0   AEp0 
Current Sources/Mirrors
Iin
Q0
AE0
Iout
Q1
AE1
npn Current Mirror
 AE1 
Iout = 
Iin

 AE0 
•
•
•
•
Termed a “current mirror”
Output current linearly dependent on Iin
Serves as a current amplifier
Widely used circuit
Current Sources/Mirrors
iin iout
IBS
Q0
AE0
MIBS
Q1
AE1
M=
A E1
A E0
npn current mirror amplifier
i out =?
Current Sources/Mirrors
iin iout
IBS
Q0
AE0
MIBS
Q1
M=
AE1
A E1
A E0
npn current mirror amplifier
 AE1 
i out = 
iin

 AE0 
Amplifiers both positive and negative currents
Current Sources/Mirrors
Iin
I0
Iout
IOU T
Q0
AE0
Q1
M0
W0,L0
M1
W1,L1
AE1
npn Current Mirror
n-channel Current Mirror
Iout =?
Current Sources/Mirrors
Iin
Iout
M0
W0,L0
M1
W1,L1
n-channel Current Mirror
μC W
2
Iin = OX 1  VGS1-VT1 
2L 2
Iout =
μ COX W2
 VGS2 -VT2 2
2L 2
If process parameters are matched, it follows that
 W2 L1 
Iout = 
Iin

 W1 L2 
Current mirror gain can be accurately controlled
Layout is important to get accurate gain (for both MOS and BJT)
Layout of Current Mirrors
Example with M = 2
 W2 L1 
M= 

W
L
 1 2
Standard layout
 W2  2W L1  2L 
M= 


W

2

W
L

2

L
 1

2
 2W  2W L1  2L 
M=  1

2

 W1  2W L1  2L 
Gate area after fabrication depicted
Layout of Current Mirrors
Example with M = 2
 W2 L1 
M= 

W
L
 1 2
 2W  2W L1  2L 
M=  1

2

 W1  2W L1  2L 
Standard layout
 2W  4W L1  2L 
M=  1

2

 W1  2W L1  2L 
Better Layout
Layout of Current Mirrors
Example with M = 2
 W2 L1 
M= 

W
L
 1 2
Standard layout
 2W  4W L1  2L 
M=  1

2
W

2

W
L

2

L
 1

1
Better Layout
 2W  4W L1  2L 
M=  1

2

 W1  2W L1  2L 
This is termed a common-centroid layout
Even Better Layout
Current Sources/Mirrors
iin iout
IBS
MIBS
M=
M1
W1,L1
W2 L1

W1 L 2
M2
W2,L2
n-channel current mirror current amplifier
 W2 L1 
i out = 
iin

 W1 L2 
Amplifiers both positive and negative currents
Current Sources/Mirrors
I0
M0
I1
I2
In
M1
M2
Mn
W2,L2
Wn,Ln
W1,L1
W0,L0
multiple output n-channel current sink array
VDD
M1
M0
W1,L1
W0,L0
I0
I1
M2
W2,L2
I2
Mn
Wn,Ln
In
multiple output p-channel current source array
 Wk L0 
Ik = 
I0

 W0 Lk 
High-gain amplifier
VDD
AV
8000
IB
VOUT
VIN
Q1
VEE
How can we build the current source?
What is the small-signal model of an actual current source?
Basic Current Sources and Sinks
Basic Bipolar Current Sinks
Basic Bipolar Current Sources
IX
VCC
IX
VXX
IX = JS AEe
VXX
Vt
VCC
VYY
IX
IX
VCC
VCC
R
VCC
IX
IX
IX
R
IX
IX
VCC -0.6V
R
Very practical methods for biasing the BJTs can be used
Current Mirrors often used for generating sourcing and sinking currents
Basic Current Sources and Sinks
Small-signal Model of BJT Current Sinks and Sources
IX
VXX
iB
VBE
gπ
gmVBE
g0
g0
Small-signal model of all other BJT Sinks and Sources are the same
Basic Current Sources and Sinks
Small-signal Model of BJT Current Sinks and Sources
IX
VXX
iB
VBE
gπ
gmVBE
g0
g0
Small-signal model of all other BJT Sinks and Sources are the same
Basic Current Sources and Sinks
Small-signal Model of BJT Current Sinks and Sources
VGS
gmVGS
g0
g0
Small-signal model of all other MOS Sinks and Sources are the same
High-gain amplifier
VDD
VOUT
IB
VOUT
VIN
VIN
-gm
AV 
g0
Q1
Q1
VEE
VCC
iB
Q2
VYY
VOUT
VIN
VIN
Q1
VEE
Q1
VIN
VBE1
VOUT
gπ1
gm1VB
g01
E1
g02
VOUT
-gm1
AV 
g01  g02
-gm1
2g01
High-gain amplifier
VDD
VCC
IB
VYY
VOUT
VOUT
VIN
Q1
VIN
Q1
VEE
VEE
-gm
AV 
g0
AV
-g m1
2g 01
• Nonideal current source decreased the gain by a factor of 2
• But the voltage gain is still quite large
Can the gain be made even larger?
Related documents