Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ROXY™ EC/MS System 1 Service Training 2012 • Introduction to ROXY EC system • basics & application review • ReactorCell and µ-PrepCell maintenance • filling the µ-PrepCell • Dialogue training • program concept • practical workshop including event programming • ROXY EC system Installation • establishing communication with RS232 cable • trigger cable • grounding kit • Practical insights on application • test compounds • mass spectrometric analysis • optimization of conditions 2 Application Areas Electrochemistry/MS Oxidative tagging of proteins Disulfide bond reduction Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 3 Electrochemistry up front MS Instrumental set-up ROXY EC System µ-PrepCell™ ReactorCell™ 4 Electrochemistry (EC) upfront MS Instrumental set-up ROXY™ EC System ROXY™ EC/LC System ROXY™ EC/LC System 5 Electrochemistry upfront MS Disulfide bond reduction Oxidative tagging of proteins Peptide bond cleavage Drug ̶ protein binding Drug metabolism Drug/xenobiotic Electrochemistry metabolism upfront MS Metabolite synthesis Desalting Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 6 Electrochemistry upfront MS Prediction of drug/xenobiotic metabolism ReactorCell (or µ-PrepCell) Drug 3-D 2-DMS MSVoltammogram Voltammogram 7 Electrochemistry upfront MS Prediction of drug/xenobiotic metabolism Amodiaquin metabolic pathway: Faber et al., Angew. Chem. Int. Ed. Engl. 5 (2011) A52-58 8 Electrochemistry upfront MS Disulfide bond reduction Oxidative tagging of proteins Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Protein chemistry Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 9 Electrochemistry upfront MS Protein chemistry Amino acid Functional group Oxidized forms, with mass change Tyrosine phenol quinol, +16 Da quinone, +14Da indole indolol, +16 Da indolone, +14Da Tryptophan Cysteine thiol sulfenic acid, +16 Da sulfinic acid, +32Da sulfonic acid, +48 Da Methionine methylthioether methylsulfoxide, + 16 Da methylsulfone, + 32 Da 10 Drug – protein adduct formation 11 Electrochemistry upfront MS Protein chemistry 12 Mechanism of cleavage after Tyrosine (Tyr; Y) & Tryptophan (Trp; W) residues Tyrosine containing peptides: 1000mV Tryptophan containing peptides: 800mV Oxidation and cleavage pathways are pH dependent: • oxidation yield decreases with increasing pH • cleavage products formed only in acidic and neutral conditions J. Roeser et al., Anal. Chem., 2010, 82 (18), 7 Cleavage of Angiotensin I (DRVYIHPFHL) ADVANTAGES: 1) …alternative to enzymatic digestion by electro-chemical push button reaction in seconds! 2) clean, no enzymes, no non-specific cleavage, no auto-digestion, etc. CURRENT STATUS: 1) cleavage of big proteins is under development, 2) optimization to increase the reaction yield. 14 Electrochemical Disulfide Bond Reduction 15 Tested compounds Peptide/protein Nr of AA Nr of bonds Somatostatin 14 1 Insuline 51 2 Inter 1 Intra α - Lactalbumin 123 4 Comparison with MD 1147.75 100 Relative Abundance 90 80 Insulin 70 NL: 5.26E5 111214 Insulin MD pulse 01#7887-8260 RT: 23.22-24.32 AV: 374 T: ITMS + c ESI Full ms [360.00-2000.00] 956.75 60 50 Insulin reduced on MD electrode 40 30 850.98 681.12 20 10 0 100 1434.32 960.56 1152.22 1169.72 1213.92 626.38 681.18 1439.61 1480.74 1911.39 NL: 3.15E5 insulin 01#3203-3903 RT: 9.37-11.41 AV: 701 T: ITMS + c ESI Full ms [360.00-2000.00] 851.07 90 Reduced Insulin 80 70 60 50 40 Insulin reduced on new electrode 30 858.86 20 10 680.36 571.43 866.11 No Insulin present 1134.04 1170.66 1369.11 0 500 1000 m/z 1500 1643.48 1812.84 2000 Insulin - new working electrode 1147.5278 100 Relative Abundance 90 80 70 NL: 1.15E5 Cell OFF No reduction 02#1069-1084 RT: 10.76-11.86 AV: 16 F: FTMS + c ESI Full ms [300.00-2000.00] 60 956.4407 50 40 30 20 10 0 100 960.2694 646.0303680.7421 751.2788 850.9267 944.4320 970.7545 1133.5199 1160.3113 1255.4004 1361.7371 680.7420 NL: 6.77E4 90 80 850.6758 70 Pulse ON Complete reduction 60 50 40 30 20 780.3308 10 0 537.0156 666.9364 600 700 800 858.1774 956.7773 917.9375 964.4340 900 1000 m/z 1147.7295 1080.6786 1100 1211.2011 1200 1316.5495 1300 02#1017-1029 RT: 6.93-7.81 AV: 13 F: FTMS + c ESI Full ms [300.00-2000.00] Somatostatin New working electrode Z=3 546.5790 Relative Abundance 90 80 70 111216 Somatostati pulse 02#152-163 RT: 4.78-5.29 AV: 12 F: FTMS + c ESI Full ms [100.00-2000.00] Z=2 559.2278 60 NL: 5.19E4 Cell OFF No reduction 100 819.3646 50 40 517.1583 30 571.8769 20 10 296.9704 419.6727 385.9019 474.8328 0 100 615.5303 838.3381 706.8891 749.4350 1008.4596 547.2509 Z=3 90 70 1241.1783 Pulse ON Complete reduction Z=2 820.3723 80 1140.0590 60 50 40 30 20 10 0 559.8999 279.9241 510.2107 439.8490 567.5920 320.9508 300 400 500 600 706.8571 784.0946 700 800 m/z 835.3762 926.6889 986.0088 900 1000 1129.5707 1100 1236.7040 1200 NL: 2.43E4 111216 Somatostati pulse 02#96-112 RT: 2.14-2.89 AV: 17 F: FTMS + c ESI Full ms [100.00-2000.00] α – Lactalbumin New working electrode 100 Relative Abundance 90 80 1576.32 Cell OFF No reduction 70 1575.98 60 1773.10 50 1772.98 40 1580.53 1418.69 30 1777.97 1782.84 20 864.71 10 878.72 0 100 1289.90 1182.57 1290.44 994.67 998.66 1092.30 1184.41 1014.28 946.80 60 1290.63 50 1290.36 40 1094.53 887.68 30 1017.06 949.12 1293.35 1181.74 10 800 900 1000 1100 1233.91 1200 1910.60 NL: 1.11E4 111216 Lactalbumin pulse01#887-921 RT: 14.69-16.24 AV: 35 F: FTMS + c ESI Full ms [800.00-2000.00] 1412.87 1186.41 20 1792.08 1807.05 Pulse ON Complete reduction 1182.91 80 70 1593.07 1615.27 1420.38 1183.16 1092.22 90 0 NL: 8.28E4 111216 Lactalbumin pulse01#772-811 RT: 9.41-11.21 AV: 40 F: FTMS + c ESI Full ms [800.00-2000.00] 1419.39 1576.99 1577.21 1422.29 1526.19 1302.63 1300 1581.42 1935.86 1614.94 1400 m/z 1500 1600 1700 1783.73 1839.65 1800 1900 1959.88 2000 Electrochemical reduction of the protein results in shift of charge state distribution suggesting conformational change of protein (S-S bridges reduction). Electrochemical disulfide bond reduction • on-line, electrochemical disulfide bond reduction with DESI MS • identification of disulfide containing peptides from enzymatic digestion mixture • derivatization of thiols by selenamid • charge state distribution in proteins (native vs. reduced) Zhang et al., J. Proteome Res., 2011, 10, 1293 Electrochemical Desalting of Proteins Poster at BSPR, Cambridge Mohamed Benama 0V 2.8 V Deconvoluted MS at 0V and 2.8V showing protein desalting. correspond to [Na+ + K+] combination correspond to background formylation of the protein Electrochemical Oxidation as a Surface Mapping Probe of Higher Order Protein Structure Cell OFF Cell ON McClintock et al., Anal. Chem. 2008, 80, 3304 23 Electrochemistry upfront MS Disulfide bond reduction Oxidative tagging of proteins Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Oxidative damage of DNA Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 24 Oxidative Damage of DNA 25 Oxidative Damage of DNA Laborious, time-consuming and hardly automatable Stability of the (modified) nucleic acids during sample prep Low specificity and sensitivity 26 Oxidative Damage of DNA 27 Mass Voltammograms of Nucleosides Herbert Oberacher, Institute of Legal Medicine, Innsbruck, Austria; Electrochemical Simulation of Oxidation Processes Involving NucleicAcids On-line Monitored with Electrospray Ionization-Mass Spectrometry - poster IMSC 2009 28 Oxidative Damage of DNA EC/MS of guanosine: EC/MS of guanosine + APAP: Several studies on cell cultures and rodents have demonstrated that acetaminophen can covalently bind to nucleic acids after metabolic activation. Oxidative Damage of DNA Electrochemistry upfront MS provides new tool to asses the antioxidant potency of chemicals ! 30 Electrochemistry upfront MS Oxidative tagging of proteins Disulfide bond reduction Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 31 Signal enhancement LC–EC–UV/VIS and LC–EC–MS chromatograms for a mixture of the sixteen priority pollutant PAH. Positive-ion mode: naphthalene (1), acenaphthylene (2), acenaphthene (3), fluorene (4), phenanthrene (5), anthracene (6), fluoranthene (7), pyrene (8), benzo[a]anthracene (9), chrysene (10), benzo[b]fluoranthene (11), benzo[k]fluoranthene (12), benzo[a]pyrene (13), dibenzo[a,h]anthracene (14), benzo[ghi]perylene (15), indeno[1,2,3-cd]pyrene (16). (a) UV chromatogram recorded at 254 nm; (b) MS chromatogram, scan mode m/z 150–400, electrochemical flow cell off; (c) MS chromatogram, scan mode m/z 150–400, electrochemical flow cell 1.6 V; (d) MS chromatogram, selected ion monitoring (SIM) mode, electrochemical flow cell 1.6V Anal. Bioanal. Chem. 378 (2004) 917– 925 Electrochemistry upfront MS Disulfide bond reduction Oxidative tagging of proteins Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Skin sensitization Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 33 Electrochemistry upfront MS 34 Electrochemistry upfront MS Disulfide bond reduction Oxidative tagging of proteins Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Environmental analysis Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 35 Persistence in environment, stability in EC? Compound Environmental persistence EC starting voltage (mV) Sulfadizine Medium 1100 Stable 1800 Ethidimurin Medium -1420 Ibuprofen Medium 1200 17ß-estradiol Unstable 300 Stable 1750 Very Stable 4500 Stable 1600 Metabenzthiazuron Clotrimazol PCB31 Tetracene => QSAR modeling… Stability and structure Compound Structure EC starting voltage (mV) Naphthalene 340 Anthracene 930 Phenanthren 600 Benzo[a]anthracene 750 Tetracene 1600 Chrysene 1300 Electrochemistry upfront MS Oxidative tagging of proteins Disulfide bond reduction Peptide bond cleavage Drug ̶ protein binding Desalting Drug metabolism Electrochemistry upfront MS Metabolite synthesis Oxidative damage of DNA Signal enhancement in MS Pollutants Skin sensitization 38 Electrochemistry upfront MS Other applications Joint Conference of German and Polish Mass Spectrometry Society Poznan, Poland March 4 - 7, 2012 39 Electrochemistry upfront MS Other applications This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LCHR-MS. 40 Summary EC/MS represents a powerful technique for study of REDOX reactions in life science 41 42