Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Internet Engineering
Czesław Smutnicki
Discrete Mathematics – Numbers Theory
CONTENTS
•
•
•
•
•
•
•
•
•
•
Basic notions
Greatest common divisor
Modular arithmetics
Euclidean algorithm
Modular equations
Chinese theorem
Modular powers
Prime numbers
RSA algorithm
Decomposition into factors
BASIC NOTIONS
•
•
•
•
•
•
•
•
•
•
•
•
Natural/integer numbers
Divisor d|a, a = kd for some integer k
d|a if and only if -d|a
Divisor: 24: 1,2,3,4,6,8,12,24
Trivial divisors 1 and a
Prime number 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59
Composite number, 27 (3|27)
For any integer a and any positive integer n there exist unique integers q and r,
0<=r<n so that a = qn + r
Residue r = a mod n
Division q = [a/n]
Congruence: a b (mod n) if (a mod n) = (b mod n)
Equivalence class (mod n): [a]n = {a + kn : k Z}
GREATEST COMMON DIVISOR
• Common divisor: if d|a and d|b
• d|(ax + by)
• Relatively prime numbers a and b : gcd(a,b)=1
gcd(a, b) gcd(b, a )
gcd(a, b) gcd( a, b)
gcd(a, b) gcd( a , b )
gcd(a,0) a
gcd(a, ka) a
gcd(a, b) gcd(b, a modb)
MODULAR ARITHMETIC
[a]n n [b]n [a b]n
[a]n n [b]n [a b]n
[a]n n [b]n [a b]n
[a]n n [a 1 ]n [1]n
1
[a]n / n [b]n [a]n n [b ]n
+
0
1
2
3
4
5
0
0
1
2
3
4
5
1
1
2
3
4
5
0
2
2
3
4
5
0
1
3
3
4
5
0
1
2
4
4
5
0
1
2
3
5
5
0
1
2
3
4
EUCLIDEAN ALGORITHM
mx ny k , k gcd(m, n)
a0 q1a1 a2
a1 q2 a2 a3
.......... .......... ......
as 1 qs as as 1
a0 n, a1 m, as 1 0, as gcd(m, n)
x0 , x1, x2 ,..., xs , y0 , y1, y2 ,..., ys
ai mxi nyi , i 0,1,2,..., s
x0 0, y0 1, x1 1, y1 0,
xi 1 qi xi xi 1 , yi 1 qi yi yi 1 ,
EUCLIDEAN ALGORITHM.
INSTANCE
333 x 1234 y 1
1234 3*333 235 1234 3*333 235
333 1*235 98 333 1*235 98
235 2*98 39 235 2*98 39
98 2*39 20 98 2*39 20
39 1*20 19 39 1*20 19
20 1*19 1 20 1*19 1
19 19*1 0 19 19*1 0
EUCLIDEAN ALGORITHM.
INSTANCE cont.
20 1* 39 1* 20 1 1* 39 2* 20 1
1* 39 2* 98 2* 39 1 5* 39 2*98 1
5* 235 2*98 2*98 1 5* 235 12*98 1
5* 235 12* 333 1* 235 1 17* 235 12* 333 1
17* 1234 3* 333 12* 333 1 63* 333 17*1234 1
333*63 1234*17 1
x 63
y 17
MODULAR EQUATIONS
ax b (modn)
d gcd(a, n)
EQUATION EITHER HAS d VARIOUS SOLUTIONS mod n
OR DOES NOT HAVE ANY SOLUTION
CASE b = 1: MULTIPLICATIVE INVERSE
(IF gcd(a,n)=1 THEN IT EXISTS AND IS UNIQUE)
LEAST COMMON MULTIPLIER
lcm(a, b)
ab
gcd(a, b)
CHINESE THEOREM
n n1n2 ...nk , gcd(ni , n j ) 1, i j
a (a1 , a2 ,..., ak )
ai a mod ni
b (b1 , b2 ,..., bk )
(a b) mod n (( a1 b1 ) mod n1 ,..., (ak bk ) mod nk )
(a b) mod n (( a1 b1 ) mod n1 ,..., (ak bk ) mod nk )
(a b) mod n (( a1 b1 ) mod n1 ,..., (ak bk ) mod nk )
MODULAR POWERS
a 2c mod n (a c ) 2 mod n
a 2c1 mod n a (a c ) 2 mod n
RSA ALGORITHM
•
•
•
•
Find two big prime numbers p and q
Calculate n=p*q and z=(p-1)*(q-1)
Find any number d relatively prime with z
Find number e so that (e*d) mod z=1
Public key (e,n)
Private key (d,n)
Encryption message P
Decryption C
C P e mod n
P C d mod n
Thank you for your attention
DISCRETE MATHEMATICS
Czesław Smutnicki