Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Contents 1 Introduction 1.1 What motivated data mining? Why is it important? . . . . . . . . . . . 1.2 So, what is data mining? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Data mining | on what kind of data? . . . . . . . . . . . . . . . . . . . 1.3.1 Relational databases . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Data warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Transactional databases . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Advanced database systems and advanced database applications 1.4 Data mining functionalities | what kinds of patterns can be mined? . . 1.4.1 Concept/class description: characterization and discrimination . 1.4.2 Association analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3 Classication and prediction . . . . . . . . . . . . . . . . . . . . 1.4.4 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.5 Evolution and deviation analysis . . . . . . . . . . . . . . . . . . 1.5 Are all of the patterns interesting? . . . . . . . . . . . . . . . . . . . . . 1.6 A classication of data mining systems . . . . . . . . . . . . . . . . . . . 1.7 Major issues in data mining . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 6 8 9 11 12 13 13 13 14 15 16 16 17 18 19 21 Contents 2 Data Warehouse and OLAP Technology for Data Mining 2.1 What is a data warehouse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 A multidimensional data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 From tables to data cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Stars, snowakes, and fact constellations: schemas for multidimensional databases 2.2.3 Examples for dening star, snowake, and fact constellation schemas . . . . . . . . 2.2.4 Measures: their categorization and computation . . . . . . . . . . . . . . . . . . . 2.2.5 Introducing concept hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.6 OLAP operations in the multidimensional data model . . . . . . . . . . . . . . . . 2.2.7 A starnet query model for querying multidimensional databases . . . . . . . . . . . 2.3 Data warehouse architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Steps for the design and construction of data warehouses . . . . . . . . . . . . . . 2.3.2 A three-tier data warehouse architecture . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP . . . . . . . . . . . . 2.3.4 SQL extensions to support OLAP operations . . . . . . . . . . . . . . . . . . . . . 2.4 Data warehouse implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Ecient computation of data cubes . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Indexing OLAP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Ecient processing of OLAP queries . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.4 Metadata repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.5 Data warehouse back-end tools and utilities . . . . . . . . . . . . . . . . . . . . . . 2.5 Further development of data cube technology . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Discovery-driven exploration of data cubes . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Complex aggregation at multiple granularities: Multifeature cubes . . . . . . . . . 2.6 From data warehousing to data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Data warehouse usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 From on-line analytical processing to on-line analytical mining . . . . . . . . . . . 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 6 6 8 11 13 14 15 18 19 19 20 22 24 24 25 30 30 31 32 32 33 36 38 38 39 41 Contents 3 Data Preprocessing 3.1 Why preprocess the data? . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Noisy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Inconsistent data . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Data integration and transformation . . . . . . . . . . . . . . . . . . . . 3.3.1 Data integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Data transformation . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Data cube aggregation . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Data compression . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4 Numerosity reduction . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Discretization and concept hierarchy generation . . . . . . . . . . . . . . 3.5.1 Discretization and concept hierarchy generation for numeric data 3.5.2 Concept hierarchy generation for categorical data . . . . . . . . . 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 5 5 6 7 8 8 8 10 10 11 13 14 19 19 23 25 Contents 4 Primitives for Data Mining 4.1 Data mining primitives: what denes a data mining task? . . . . . . . . . . 4.1.1 Task-relevant data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 The kind of knowledge to be mined . . . . . . . . . . . . . . . . . . . 4.1.3 Background knowledge: concept hierarchies . . . . . . . . . . . . . . 4.1.4 Interestingness measures . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Presentation and visualization of discovered patterns . . . . . . . . . 4.2 A data mining query language . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Syntax for task-relevant data specication . . . . . . . . . . . . . . . 4.2.2 Syntax for specifying the kind of knowledge to be mined . . . . . . . 4.2.3 Syntax for concept hierarchy specication . . . . . . . . . . . . . . . 4.2.4 Syntax for interestingness measure specication . . . . . . . . . . . . 4.2.5 Syntax for pattern presentation and visualization specication . . . 4.2.6 Putting it all together | an example of a DMQL query . . . . . . . 4.3 Designing graphical user interfaces based on a data mining query language . 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 6 7 10 12 12 15 15 18 20 20 21 22 22 Contents 5 Concept Description: Characterization and Comparison 5.1 What is concept description? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Data generalization and summarization-based characterization . . . . . . . . . . . 5.2.1 Data cube approach for data generalization . . . . . . . . . . . . . . . . . . 5.2.2 Attribute-oriented induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Presentation of the derived generalization . . . . . . . . . . . . . . . . . . . 5.3 Ecient implementation of attribute-oriented induction . . . . . . . . . . . . . . . 5.3.1 Basic attribute-oriented induction algorithm . . . . . . . . . . . . . . . . . . 5.3.2 Data cube implementation of attribute-oriented induction . . . . . . . . . . 5.4 Analytical characterization: Analysis of attribute relevance . . . . . . . . . . . . . 5.4.1 Why perform attribute relevance analysis? . . . . . . . . . . . . . . . . . . . 5.4.2 Methods of attribute relevance analysis . . . . . . . . . . . . . . . . . . . . 5.4.3 Analytical characterization: An example . . . . . . . . . . . . . . . . . . . . 5.5 Mining class comparisons: Discriminating between dierent classes . . . . . . . . . 5.5.1 Class comparison methods and implementations . . . . . . . . . . . . . . . 5.5.2 Presentation of class comparison descriptions . . . . . . . . . . . . . . . . . 5.5.3 Class description: Presentation of both characterization and comparison . . 5.6 Mining descriptive statistical measures in large databases . . . . . . . . . . . . . . 5.6.1 Measuring the central tendency . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.2 Measuring the dispersion of data . . . . . . . . . . . . . . . . . . . . . . . . 5.6.3 Graph displays of basic statistical class descriptions . . . . . . . . . . . . . 5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 Concept description: A comparison with typical machine learning methods 5.7.2 Incremental and parallel mining of concept description . . . . . . . . . . . . 5.7.3 Interestingness measures for concept description . . . . . . . . . . . . . . . 5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 3 3 7 10 10 11 12 12 13 15 17 17 19 20 22 22 23 25 28 28 30 30 31 Contents 6 Mining Association Rules in Large Databases 6.1 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Market basket analysis: A motivating example for association rule mining . . . . . . . . . . . . 6.1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.3 Association rule mining: A road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Mining single-dimensional Boolean association rules from transactional databases . . . . . . . . . . . . 6.2.1 The Apriori algorithm: Finding frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Generating association rules from frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Variations of the Apriori algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Mining multilevel association rules from transaction databases . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Approaches to mining multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Checking for redundant multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Mining multidimensional association rules from relational databases and data warehouses . . . . . . . 6.4.1 Multidimensional association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Mining multidimensional association rules using static discretization of quantitative attributes 6.4.3 Mining quantitative association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.4 Mining distance-based association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 From association mining to correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Strong rules are not necessarily interesting: An example . . . . . . . . . . . . . . . . . . . . . . 6.5.2 From association analysis to correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Constraint-based association mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Metarule-guided mining of association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.2 Mining guided by additional rule constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 3 3 4 5 6 6 9 10 12 12 14 16 17 17 18 19 21 23 23 23 24 25 26 29 Contents 7 Classication and Prediction 7.1 What is classication? What is prediction? . . . . . . . . . . . . . . . . . . 7.2 Issues regarding classication and prediction . . . . . . . . . . . . . . . . . . 7.3 Classication by decision tree induction . . . . . . . . . . . . . . . . . . . . 7.3.1 Decision tree induction . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Tree pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Extracting classication rules from decision trees . . . . . . . . . . . 7.3.4 Enhancements to basic decision tree induction . . . . . . . . . . . . 7.3.5 Scalability and decision tree induction . . . . . . . . . . . . . . . . . 7.3.6 Integrating data warehousing techniques and decision tree induction 7.4 Bayesian classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Bayes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Naive Bayesian classication . . . . . . . . . . . . . . . . . . . . . . 7.4.3 Bayesian belief networks . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.4 Training Bayesian belief networks . . . . . . . . . . . . . . . . . . . . 7.5 Classication by backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 A multilayer feed-forward neural network . . . . . . . . . . . . . . . 7.5.2 Dening a network topology . . . . . . . . . . . . . . . . . . . . . . . 7.5.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.4 Backpropagation and interpretability . . . . . . . . . . . . . . . . . . 7.6 Association-based classication . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Other classication methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.1 k-nearest neighbor classiers . . . . . . . . . . . . . . . . . . . . . . 7.7.2 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.3 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.4 Rough set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.5 Fuzzy set approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.1 Linear and multiple regression . . . . . . . . . . . . . . . . . . . . . 7.8.2 Nonlinear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.3 Other regression models . . . . . . . . . . . . . . . . . . . . . . . . . 7.9 Classier accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.9.1 Estimating classier accuracy . . . . . . . . . . . . . . . . . . . . . . 7.9.2 Increasing classier accuracy . . . . . . . . . . . . . . . . . . . . . . 7.9.3 Is accuracy enough to judge a classier? . . . . . . . . . . . . . . . . 7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 5 6 7 9 10 11 12 13 15 15 16 17 19 19 20 21 21 24 25 27 27 28 28 28 29 30 30 32 32 33 33 34 34 35 &( *' )+-,/.1032*4658 !7*9(#4:"$0: ;<=.1>/.17@?4:2@4BAC'='C'=''D''''D'''D''=''D'''D''''D''='C'='''D'''D'''='C'=''D'''' % E &(' FHG3(& ' ?F(IJ'@) ;#4LK1VLM2@N4:[email protected]@2@7X>P.1<:5O2@0Q7@92Y;#4:4Z0Q;#.T<:>J2@>N[RS4:[email protected]>J.12@[email protected]?<Q4:2@2@0:4D2Y;'4\!']^'D;_'.14:'9('D<:2@>'R'=0:',(;a'D`b'9J'.1'D7@2@0$'?a'KTMZ'5O'D7@9'4:0Q'=;#<:'C2@>'=Rc''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''' Ud (&(& '' F(F('e'eFE f$no>2@0Q>J;#.1<:<Qgh?S.T7Yghi$4B.T5<:.12X.17@;kN[7@;#gh4p.1<Q2j'=.Tk'C7@'=;#4l''D'D'''''''D'D'''''D'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''' mq (&(& '' F(F(''eUd y3rs.1Kh<:W[2X.T2*k>/[email protected];#7$4Zt1KhKT<OMzNW[2@>J2Y{.17$;tNv.10$>J?N[IJ<O;#.140:2@'DKTiu'4O5#'.1'7@;'DNv'gh.1'<:2X'D.Tk'7@'=;#4w''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''' ' )|x &(&('' UEH}l.1#5Q< .T0:2@0:0:;#2@RbKbKh><Q2@2*>~_RD.10:WS2@Kb;>0:,KTKMzNW^4.#'OKh'<3'=5O7@'C9'=4:0Q';#<:'D2@>'R['WS';#0Q'D,'KN'4c'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''' ' ))hF) &(&('' U/U/@'e' F) 3.T7X.T<:4:0:4:2@0Q2X5#2*Kb.T>72@IJ>.1RD<Q0:W[2@0:;#2@0:Kb,>K2@>NRD4WS2@>[;7j0:.T,<:KRbN;4_N(\.1b0Biu.TW[kJ.1;4Q.1;#>(44 \.TM <:>JKhN^WbiubW[i$WS;N;KbN2jKhN2X4cN4'D0QKS''='C}='=s'}='rL'D''''D'D'''''='='C'C'='='''D'D''''''' ' ))Fd &(' d&(s' 2*d(;'@B< ) .1<O5Q,}L2XRh5#Rb.177*KbWSWS;#;#0Q<O,.1K0Q2*Ngb4S;6'.1>J'N['=N'C2@g'=2*4Q'2@gh'D;6',(2*';<B'.1'D<O5Q',2X'5#.1'D7'5O7@'=94:'0Q;#'D<:2@'>R''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''' ' ))mm &(&('' d(d('e'eFE on f:L6D\\[email protected]:;#>J<Q5O2@;>N[RSf$0:;4Q<B2*.1>(0QRS2@gh6;asI;<QN;#4:9J;5O>2@>0O.1RS0Q2*.Tgb>J;#NS43'7@9'D4Q0:';#'<Q2@>'DR'9'4:2@'>RS'D's'=2@;#<B'C.T'=<B5Q',2@';#4'D'''''D'D'''''='='C'C'='='''D'D''''''' ' ))&q &(' m&(&(VL'' ;#d(m(>''@U) 4Q2@0$?hV$i kJs3n .T}=4:;3]PN^}=o5OrC7@!9\14Q}-0:;#<QNrD2*;#>(\(>RS}4Q2@WS0$,?h;2@i$0:;#kJ,<B.T.TK4:<BN;5Q4SN,2X5O'5#[email protected]'7z4Q'0:5O;#7@'D9<Q2@4Q'>0:R;#'<QWS2*'D>(;#R'0Q,'=.1K7@'RbNDKh'DkJ<:2@'.T0Q4:,';W NC'DKh9'>4:'2@>5O'KbR>'DN>'?;>J5O'=0Q.1;'CW[N'=2X<Q5;#'RhWS'2@KbK'D>N4';7*2@'>2*'D0QR ,a'4Q''9'='=5O'C'C2@;#'='=>''0:7@?D'D'D,(''2*'Rb', ''''FFh|) &(&('' m(m('e'eFE NV;#> GLr4:2@f:0$? !L\J'L'\J<B3N'D;7@'<:92@4Q>'0:RS;#'=<Q2*'C>(KhR'=2@>'kJ0:.14'D4QG;'N[K'Khf:'N>P;#'D>N0:';#2>M'?[4Q2@'D0$0:?,';DN'=2@34:'0Q7@9<:'D2@4:k'0Q9;#'<:0Q2@2@'D>Kh>RS'M'90:>J'<:9/5O'D0Q5O2*0:'Kb9><Q'=4;'C'='='='''''''D'D'D'''''''D'D'D'''''''='='='C'C'C'='='=''''D'D'D''''''''''''FFhFhEF) &(' q&(' <Qq(2X'@Nb) iuk/.14:G;_Nf:r685 7* 9(4:\0:}l;<:2@>0OR.10QWS2*4Q;0:2X0:5#,.TK7Nf$4>MKh'D<QW'.T'0:2@'Kh>S'D''<Q2XN'D'}6I('=I'<:K'D.h'5Q,''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''''F1FhUd &(&('' q(q('e'eFE +._f:gb¡;3 6 7@94:\/0Q3;#<7*9(\4:30:;7@9<:2@4Q>0:R;#<Q,2@>2@RhR,9i¢N4:2@2@>W[R;#>4:._2@ghKb;#>[email protected];#074Q0QIJ<B.1.h>(58;=4$M'DKb<:'W'.T0:'D2@Kh'> ''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''''FhFh&m &(&('' & ^ ] K N ; Y 7 $ i J k T . : 4 ; ^ N 5 O @ 7 9 Q 4 : 0 # ; Q < * 2 ( > S R S W ; : 0 , K N £ 4 ' ' ' D ' ' ' D ' ' = ' ' D ' ' ' D ' ' ' ' D ' ' = ' C ' = ' ' ' D ' ' ' D ' ' ' = ' C ' = ' ' D ' ' ' ' ' h F x x&(L' 9x(0Q'@)7*2@;#<6.T0B>J.1.10Q7@2@?4:0:4:2X@2 #5 4P.T7!'.1'I'DI(<:'K.b'5Q'=,S'CM Kh'=<3'Kh9'D0Q'7*2@;#'<6'N;#'D0:';58'0:2@'DKh>¤''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''''FhEhx| &(&('' x(x('e'eFE VLVL2@;#4:g0O2X.1.1>J0Q582@KhO; >iuk/i$kJ.14:.1;_4QN^;NKhKb990Q7@0:2*7@;2@< ;#<6NN;0:;;0:5O;0Q5O2@0QKh2@Kh> >c'''''D'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D''''''''EEhF) &('*)_|9(WSW.T<:?¥'''D' ''D'''='C'=''D''''D'''D''=''D'''D''''D''='C'='''D'''D'''='C'=''D''''EhE ) *1 2436587:9'7<;>=@?BA4CD=FEGABHI!9J#"=F9$KJ%'LN&(M'*?BEG)AOK+-ABP-,*./7<,9*QGABHR9S=@?'TU9=F?BVQGABQWH@XWYZHRP-[*?47]\_^8=FE`=ba#cRd`7De`EGQ!28282f28282f282822g2282f2828282 *1*1 24243I3I2B2ml3 T#5inR7<9'nI;G7<7<;`n=F?B=FABEGC/AB=FHIEj9JA4HI=F9-9HIKJ9J=@Qj['EG[';j;jMSHDe`\oEGM*ABPp;G7/=FKEGABK'HI9b=FE`AB=k9-Qj[S28=F2fEjAO28=F?q2=F289K-2f28Pr28M*?42fEjAB28Pr287/K28AO=82fK'28=F2E`=f2gnI27<9'287<28;`=F2f?BAB28C/=F28EjA42fHI9s282828222g2g2228282f2f28282828282822 *1*1 24243I3I2m2 th 5i5i7<7<9'9'7<7<;`;`=F=F?B?BABABC/C/=F=FEjEjA4A4HIHI9-9-H@HIXu9JHRABcR9'd]{*7/7<e`;GEUABEGAO7DKKJ7:9v=@Ej9SAxwSKp7<K;GQ87<;j=FA4~I9S7/KyKye`['?O=F;GQjHIQ>[SzF7:Qj;GM'EGc$AB7<e`Q?O=FQG28Q#28{'AB287<;>2f=@;>28ej{'2AB2g7<Q|2282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 *1*1 24243I3I2m2m} 5iYZ?O7<=@9'QG7<Q;`cS=F?B=@ABQGC/7/=FKyEjA4HInR9-7:9'HI7<9N;>=@e]?BA4?CD=@=FQGQUEGABHIe`HI9NP-=@[9SHRKrQjA4PyEjABABHR9'9rAB9'{'nfAB7<HR;`cR=Fd];>7/eje`{'EUAB7<K'Q=@E>28=r2fe`M'28c287<Q(282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 lk1*pL 2 l*AB9'2B3 AB9'nr o [S[S=F=@EjEGAAO=@=F?q?qK'^8=F=@E`=bE>=Fe]cM'=FcSQG7(7:Qe`HR2g9'Qj2EG;j28MS2fe`EG28ABHI28928=F9S2fKy28Qj28[S2f=FEj28A=@2?qa828$2fT28282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 l*l*2m2mlh o o[S[S=F=FEjEjAA=@=@?q?qej=F{SQjQG=FH';`e`=RAOe`=FEjEj7<A4;GHIAB9JC/=@=@EG9SABHR=F9?BVQG2fABQ28282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 l*l*22mt} o o[S[S=F=FEjEjAA=@=@?q?qe`e`?O?BM'=FQjQGQGEjAx7<w;Ge<AB9'=@nrEGABHRPy9p7<=FEG{*9SHoKyKo['Q;j287/K28AOe`28EGAB2fHI9 28282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 hk1*Lp2 h*BA 9'B2 3 AB9'n( oA4PyABP-AB?7`=@G;G AB7<EV8;jAB7<QGQ7/=@^8;>ej=@{sE>=FABc9p=FEGQGAB7:P-QU7]=F9SQjKy7<;GAB7<7<QUP-=@9S[=FHR?B;`V=FQG?$ABQ^8=FE>2=@28cS=F2fQj7<28Q282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 h*h*m2m2 lh ;j7<7<;j9SABHoKpKoA=Fe]9SA4E=@V-?BVv=@Qj9SABQ=F?BV28QGAB2QU2g2g2228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 h*h*2m2 t} o7/?=@I9-M'7<Py9EGA4AO9*=FA4?$9*[nf=FcEGV-Ej7<K;G9AB~vP-AOKAB7]9'=@AB9'9SnKIG28e`HR289SI28M'2f7:;-2828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 t Lp1*2 tAB9'2B3 BA 9'n( 7`7`\'\'EUEUK'^8=@=FE>=(E>=@=FcS9S=F=@Qj?B7<VvQQj28ABQ2=@2g9SKy2A4289oX2fHR;j28PJ28=F28EjAB2fHR9(28;G287<Ej2f;GAB287<~R2=F28?2f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 tt2m2mlh ##^ 7<H'Ve`M'ZPyHR;`7<KI9Ec=Fe]?QG=@7DQGKsQjA=Fw$Qje<QG=FH'Eje`A4AOHI=F9sEjA4=FHI9S9J=@=@?4V9SQj=FA4?BQVQGAB28Q28282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 }k1*1*Lp22 t}*AB9'22Bt3 AB9'nrT# oLpA4'M Py'M EGHI?BBA Ej?PJ=@A4Py;G=@ABE7/EGV87/KK_AOQG=87/7`=@^8\';>EGej=F;>{sE>=I=@e`ABcSEG9pAB=FHIQjPr9J7<QbM'H@?B28XuEGABQjPr2fEG;G287/MK28e`AOEG=828M'K';j2f7<=@Qf28E>=AB289-2f2fEj7`2828\'22E2828KH'2f2fe`2828M*P-28287<2f2f92828EGQ28282828282f2f2f2828282222g2g2g2222828282828282f2f2f2828282828282f2f2f2828282828282222g2g2g2222828282f2f2f282828282828282828222 1*1*22 }*}*2m2mlh LNLNM'A49*?BGE4A 9*Axn KoA4=@PyQGQG7<H'9'e`QjAOA4=@HIEG9SABHR=F9'?Q=F9SAB9y=@?4PrVQjM'A4QZ?BEGHFABPrXPr7/KM'AO?B=8EGABK'Pr=F7/E`=KAO=82K'=@28E>2f=62828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 k1*Lp2 *AB9'2B3 AB9'n(¡EG{*7:7c-¡ -P HIAB;G9'?OABKI9'n(¡¢=FAO9SKKy7`=r¡e`7<?Oc£=FQGQjAx28w2fe<=F28EjAB28HR9p28HF2fX28¡287<2fcp28P-2AB9'28AB9'2fn828E>28=@QG2f¤Q-28282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*1*22 **2m2mlh ¡¡7:7:c-c-'MGQ EjQ`;G=FMSnRe]7gEGM'P-;j7bAB9'PyAB9'A4n¥9*A49*2gn228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 1*2 k1* M*2 *P-2 t PJ=@¡;GV7:cJ28`e 82HI9v2fEj7<28928EU2fPy28A49*28A49*2n¦2g2228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822 3 0h ht } 11 11 1 }} 456748/9-:;9=<?>A@B>A@BC=D'E!E"F7>HGI#9-$:J>A&KL%'@MN&6O(*6P)&6/+-6Q,.&6/(6/%/6/06Q16/6/6Q26/6P6/6Q06/6/6Q6/6/6/6Q6/6P6O6P6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6 [email protected]:JMW[I:WF7FAKL>7XYCL[I>[email protected]:u[#\t'8/U[I9-cJ:]v_9^Dd<_@>7MJ@wx>7@[IC^cJ>7@`CKaKLwyF7M&>7:Wb0z{KLcd8/8'9-:]KS9^Xe<_9">7>7@.@fh>7gi@EjC^[#`Gk>m[#lnGJGVz@Dd>HE|LEUF7[I>HM}GI9":W>76PKS@6OM16P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66 456po~'45:W6pzBo[I67cd41`y'z>7[MWXYUj9"[IFMy9-KL@j@e\_8/9-U9-:;\.9>7K <_\>79"@:]>79O@CXY>7@6Q>76/@C6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6P6P6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66 44556p6poo6p6poRgBTVG;KL>7XY[[email protected]:W>l[Ic]G/G;>H\9"9-Fj:;8/9^9-XY:]9^>7@<_>7@>7C@>7@6/C6Qg.6/v.MW6/:J[I6/XY6QMy6/9-@j6/\_6Q6/cJ6PKS:J6/KS:s6Qv.6/Ej[6/M6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66 44556p6 R`g.KcW[G;@j>H9"\.FnMPqsXY9"@jEj\Y9LG;:W[IMVMWK-[bx9-c]8/GJz{9-:;qs9=MJMW<_U[>7@MP>7>7@@_C8P9"6Q:]6/9^6/<_6/>7@6Q>7@6/C6/6Q6Q6/6/6P6P6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66 456pg.UBXYXe9"cWv6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6Q6/6/6Q6/6P6/6Q6/6/6Q6/6/6/6Q6/6P6O6P6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6 4 3R RR RR RR R