Download Contents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Contents
1 Introduction
1.1 What motivated data mining? Why is it important? . . . . . . . . . . .
1.2 So, what is data mining? . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Data mining | on what kind of data? . . . . . . . . . . . . . . . . . . .
1.3.1 Relational databases . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2 Data warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3 Transactional databases . . . . . . . . . . . . . . . . . . . . . . .
1.3.4 Advanced database systems and advanced database applications
1.4 Data mining functionalities | what kinds of patterns can be mined? . .
1.4.1 Concept/class description: characterization and discrimination .
1.4.2 Association analysis . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.3 Classication and prediction . . . . . . . . . . . . . . . . . . . .
1.4.4 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.5 Evolution and deviation analysis . . . . . . . . . . . . . . . . . .
1.5 Are all of the patterns interesting? . . . . . . . . . . . . . . . . . . . . .
1.6 A classication of data mining systems . . . . . . . . . . . . . . . . . . .
1.7 Major issues in data mining . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
6
8
9
11
12
13
13
13
14
15
16
16
17
18
19
21
Contents
2 Data Warehouse and OLAP Technology for Data Mining
2.1 What is a data warehouse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 A multidimensional data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 From tables to data cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Stars, snowakes, and fact constellations: schemas for multidimensional databases
2.2.3 Examples for dening star, snowake, and fact constellation schemas . . . . . . . .
2.2.4 Measures: their categorization and computation . . . . . . . . . . . . . . . . . . .
2.2.5 Introducing concept hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.6 OLAP operations in the multidimensional data model . . . . . . . . . . . . . . . .
2.2.7 A starnet query model for querying multidimensional databases . . . . . . . . . . .
2.3 Data warehouse architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Steps for the design and construction of data warehouses . . . . . . . . . . . . . .
2.3.2 A three-tier data warehouse architecture . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP . . . . . . . . . . . .
2.3.4 SQL extensions to support OLAP operations . . . . . . . . . . . . . . . . . . . . .
2.4 Data warehouse implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Ecient computation of data cubes . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2 Indexing OLAP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3 Ecient processing of OLAP queries . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4 Metadata repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.5 Data warehouse back-end tools and utilities . . . . . . . . . . . . . . . . . . . . . .
2.5 Further development of data cube technology . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Discovery-driven exploration of data cubes . . . . . . . . . . . . . . . . . . . . . .
2.5.2 Complex aggregation at multiple granularities: Multifeature cubes . . . . . . . . .
2.6 From data warehousing to data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Data warehouse usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 From on-line analytical processing to on-line analytical mining . . . . . . . . . . .
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
6
6
8
11
13
14
15
18
19
19
20
22
24
24
25
30
30
31
32
32
33
36
38
38
39
41
Contents
3 Data Preprocessing
3.1 Why preprocess the data? . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Noisy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Inconsistent data . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Data integration and transformation . . . . . . . . . . . . . . . . . . . .
3.3.1 Data integration . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Data transformation . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Data cube aggregation . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . .
3.4.3 Data compression . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4 Numerosity reduction . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Discretization and concept hierarchy generation . . . . . . . . . . . . . .
3.5.1 Discretization and concept hierarchy generation for numeric data
3.5.2 Concept hierarchy generation for categorical data . . . . . . . . .
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
5
5
6
7
8
8
8
10
10
11
13
14
19
19
23
25
Contents
4 Primitives for Data Mining
4.1 Data mining primitives: what denes a data mining task? . . . . . . . . . .
4.1.1 Task-relevant data . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 The kind of knowledge to be mined . . . . . . . . . . . . . . . . . . .
4.1.3 Background knowledge: concept hierarchies . . . . . . . . . . . . . .
4.1.4 Interestingness measures . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.5 Presentation and visualization of discovered patterns . . . . . . . . .
4.2 A data mining query language . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Syntax for task-relevant data specication . . . . . . . . . . . . . . .
4.2.2 Syntax for specifying the kind of knowledge to be mined . . . . . . .
4.2.3 Syntax for concept hierarchy specication . . . . . . . . . . . . . . .
4.2.4 Syntax for interestingness measure specication . . . . . . . . . . . .
4.2.5 Syntax for pattern presentation and visualization specication . . .
4.2.6 Putting it all together | an example of a DMQL query . . . . . . .
4.3 Designing graphical user interfaces based on a data mining query language .
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
4
6
7
10
12
12
15
15
18
20
20
21
22
22
Contents
5 Concept Description: Characterization and Comparison
5.1 What is concept description? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Data generalization and summarization-based characterization . . . . . . . . . . .
5.2.1 Data cube approach for data generalization . . . . . . . . . . . . . . . . . .
5.2.2 Attribute-oriented induction . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Presentation of the derived generalization . . . . . . . . . . . . . . . . . . .
5.3 Ecient implementation of attribute-oriented induction . . . . . . . . . . . . . . .
5.3.1 Basic attribute-oriented induction algorithm . . . . . . . . . . . . . . . . . .
5.3.2 Data cube implementation of attribute-oriented induction . . . . . . . . . .
5.4 Analytical characterization: Analysis of attribute relevance . . . . . . . . . . . . .
5.4.1 Why perform attribute relevance analysis? . . . . . . . . . . . . . . . . . . .
5.4.2 Methods of attribute relevance analysis . . . . . . . . . . . . . . . . . . . .
5.4.3 Analytical characterization: An example . . . . . . . . . . . . . . . . . . . .
5.5 Mining class comparisons: Discriminating between dierent classes . . . . . . . . .
5.5.1 Class comparison methods and implementations . . . . . . . . . . . . . . .
5.5.2 Presentation of class comparison descriptions . . . . . . . . . . . . . . . . .
5.5.3 Class description: Presentation of both characterization and comparison . .
5.6 Mining descriptive statistical measures in large databases . . . . . . . . . . . . . .
5.6.1 Measuring the central tendency . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2 Measuring the dispersion of data . . . . . . . . . . . . . . . . . . . . . . . .
5.6.3 Graph displays of basic statistical class descriptions . . . . . . . . . . . . .
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Concept description: A comparison with typical machine learning methods
5.7.2 Incremental and parallel mining of concept description . . . . . . . . . . . .
5.7.3 Interestingness measures for concept description . . . . . . . . . . . . . . .
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
2
3
3
7
10
10
11
12
12
13
15
17
17
19
20
22
22
23
25
28
28
30
30
31
Contents
6 Mining Association Rules in Large Databases
6.1 Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Market basket analysis: A motivating example for association rule mining . . . . . . . . . . . .
6.1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.3 Association rule mining: A road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Mining single-dimensional Boolean association rules from transactional databases . . . . . . . . . . . .
6.2.1 The Apriori algorithm: Finding frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.2 Generating association rules from frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Variations of the Apriori algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Mining multilevel association rules from transaction databases . . . . . . . . . . . . . . . . . . . . . .
6.3.1 Multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.2 Approaches to mining multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.3 Checking for redundant multilevel association rules . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Mining multidimensional association rules from relational databases and data warehouses . . . . . . .
6.4.1 Multidimensional association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Mining multidimensional association rules using static discretization of quantitative attributes
6.4.3 Mining quantitative association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.4 Mining distance-based association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 From association mining to correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.1 Strong rules are not necessarily interesting: An example . . . . . . . . . . . . . . . . . . . . . .
6.5.2 From association analysis to correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6 Constraint-based association mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.1 Metarule-guided mining of association rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.2 Mining guided by additional rule constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
3
3
3
4
5
6
6
9
10
12
12
14
16
17
17
18
19
21
23
23
23
24
25
26
29
Contents
7 Classication and Prediction
7.1 What is classication? What is prediction? . . . . . . . . . . . . . . . . . .
7.2 Issues regarding classication and prediction . . . . . . . . . . . . . . . . . .
7.3 Classication by decision tree induction . . . . . . . . . . . . . . . . . . . .
7.3.1 Decision tree induction . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.2 Tree pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.3 Extracting classication rules from decision trees . . . . . . . . . . .
7.3.4 Enhancements to basic decision tree induction . . . . . . . . . . . .
7.3.5 Scalability and decision tree induction . . . . . . . . . . . . . . . . .
7.3.6 Integrating data warehousing techniques and decision tree induction
7.4 Bayesian classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.1 Bayes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.2 Naive Bayesian classication . . . . . . . . . . . . . . . . . . . . . .
7.4.3 Bayesian belief networks . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.4 Training Bayesian belief networks . . . . . . . . . . . . . . . . . . . .
7.5 Classication by backpropagation . . . . . . . . . . . . . . . . . . . . . . . .
7.5.1 A multilayer feed-forward neural network . . . . . . . . . . . . . . .
7.5.2 Dening a network topology . . . . . . . . . . . . . . . . . . . . . . .
7.5.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5.4 Backpropagation and interpretability . . . . . . . . . . . . . . . . . .
7.6 Association-based classication . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Other classication methods . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.1 k-nearest neighbor classiers . . . . . . . . . . . . . . . . . . . . . .
7.7.2 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.3 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.4 Rough set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.5 Fuzzy set approaches . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.1 Linear and multiple regression . . . . . . . . . . . . . . . . . . . . .
7.8.2 Nonlinear regression . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.3 Other regression models . . . . . . . . . . . . . . . . . . . . . . . . .
7.9 Classier accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.1 Estimating classier accuracy . . . . . . . . . . . . . . . . . . . . . .
7.9.2 Increasing classier accuracy . . . . . . . . . . . . . . . . . . . . . .
7.9.3 Is accuracy enough to judge a classier? . . . . . . . . . . . . . . . .
7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
5
6
7
9
10
11
12
13
15
15
16
17
19
19
20
21
21
24
25
27
27
28
28
28
29
30
30
32
32
33
33
34
34
35
&( *' )+-,/.1032*4658 !7*9(#4:"$0: ;<=.1>/.17@?4:2@4BAC'='C'=''D''''D'''D''=''D'''D''''D''='C'='''D'''D'''='C'=''D'''' % E
&(' FHG3(& ' ?F(IJ'@) ;#4LK1VLM2@N4:[email protected]@2@7X>P.1<:5O2@0Q7@92Y;#4:4Z0Q;#.T<:>J2@>N[RS4:[email protected]>J.12@[email protected]?<Q4:2@2@0:4D2Y;'4\!']^'D;_'.14:'9('D<:2@>'R'=0:',(;a'D`b'9J'.1'D7@2@0$'?a'KTMZ'5O'D7@9'4:0Q'=;#<:'C2@>'=Rc''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''' Ud
(&(& '' F(F('e'eFE f$no>2@0Q>J;#.1<:<Qgh?S.T7Yghi$4B.T5<:.12X.17@;kN[7@;#gh4p.1<Q2j'=.Tk'C7@'=;#4l''D'D'''''''D'D'''''D'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''' mq
(&(& '' F(F(''eUd y3rs.1Kh<:W[2X.T2*k>/[email protected];#7$4Zt1KhKT<OMzNW[2@>J2Y{.17$;tNv.10$>J?N[IJ<O;#.140:2@'DKTiu'4O5#'.1'7@;'DNv'gh.1'<:2X'D.Tk'7@'=;#4w''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''
' )|x
&(&('' UEH}l.1#5Q< .T0:2@0:0:;#2@RbKbKh><Q2@2*>~_RD.10:WS2@Kb;>0:,KTKMzNW^4.#'€OKh'<3'=5O7@'C9'=4:0Q';#<:'D2@>'R['WS';#0Q'D,'KN'4c'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''
'
))hF)
&(&('' U/U/@'e' F) ‚3.T7X.T<:4:0:4:2@0Q2X5#2*Kb.T>7ƒ2@IJ>.1RD<Q0:W[2@0:;#2@0:Kb,>K2@>NRD4‡WS2@>[;7j0:.T,<:KRbN;ˆ4_N(\.1„b0Biu.TW[kJ.1;4Q.1;#>(44…\‰.TM <:>JKhN^WŠ„biu„bW[i$WS;N;KbN†2jKhN†2X4cN4'D0QKS'‚‡'=‹ƒ'C}='=Œs'}='rL'DŽ''''D'D'''''='='C'C'='='''D'D'''''''
'
))Fd
&(' d&(s' 2*d(;'@B< ) .1<O5Q,}L2XRh5#Rb.17‰7*KbWSWS;#;#0Q<O,.1K0Q2*Ngb4S;6'.1>J'N['=N'C2@g'=2*4Q'2@gh'D;6',(2*';<B'.1'D<O5Q',2X'5#.1'D7'5O7@'=94:'0Q;#'D<:2@'>R''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''
'
))mm
&(&('' d(d('e'eFE on‡‚ f:’LŒ‡Œ6‚‡“‡D\\‚[email protected]:;#>J<Q5O2@;>N[RSf$’‡0:;4Q<B2*.1>(0QRS2@ghŒ6;a“ŒsI;<QN;#4:9J;5O>”2@>0O.1RS0Q2*.Tgb>J;#NS4•‚3'7@9'D4Q0:';#'<Q2@>'DR'9'4:2@'>RS'D's'=2@;#<B'C.T'=<B5Q',2@';#4‘'D'''''D'D'''''='='C'C'='='''D'D'''''''
'
))&q
&(' m&(&(VL'' ;#d(m(>''@U) 4Q2@0$?h‡‚V$i kJs3n .T}=4:;‚3]PN^}=“o5OrC7@‹!9\1“4Q}-0:–;#<QNrD2*;#>(\(>RS}—4Q2@WS0$,?h;2@i$0:;#kJ,<B.T.TK4:<BN;5Q4SN,2X5O'5#[email protected]'7z4Q'0:5O;#7@'D9<Q2@4Q'>0:R;#'<QWS2*'D>(;#R'0Q,'=.1K7@'RbNDKh'DkJ<:2@'.T0Q4:,';W
NC'DKh9'>4:'2@>5O'KbR>'DN>'?;>J5O'=0Q.1;'CW[N'=2X<Q5‡;#'RhWS'2@KbK'D>N4';7*˜‡2@'>2*'D0QR ,a'4Q''9™'='=5O'C'C2@;#'='=>''0:7@?D'D'D,(''2*'Rb', '''—'—FFh|)
&(&('' m(m('e'eFE N†–V;#“> ‡GLr4:2@f:‚‡0$‚‡? ‹!š’L\J'“‡–L'\J<B‚3N'D;7@'<:92@4Q>'0:RS;#'=<Q‰2*'C>(KhR'=2@>'kJ0:.14‡'D4QG;'N[K›'Khf:'N>P;#'D>N0:';#2œ>M'?[4Q2@'D0$0:?,';DN'=2@‚34:'0Q7@9<:'D2@4:k'0Q9;#'<:0Q2@2@'D>Kh>RS'M†'90:>J'<:9/5O'D0Q5O2*0:'Kb9><Q'=4;Š'C'='='='''''''D'D'D'''''''D'D'D'''''''='='='C'C'C'='='=''''D'D'D''''''''''—'—'—FFhFhEF)
&(' q&(ž' <Qq(2X'@Nb) iuk/.1†4:G‡;_Nf:r685 7*ž 9(4:\0:}l;<:2@>0OR.10QWS2*4Q;0:2X0:5#,.TK7ƒNf$4Ÿ>MKh'D<QW'.T'0:2@'Kh>S'D'ž'<Q2XN'D'}6I('=I'<:K'D.h'5Q,‘''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''—'—F1FhUd
&(&('' q(q('e'eFE +‘‚‡‹š._f:gb¡;3‚ 6’ 7@“‡94:\/0Q‚3;#<7*9(\4:‚30:;7@9<:2@4Q>0:R;#<Q,2@>2@RhR,†9i¢N4:2@2@>W[R›;#˜‡>4:._2@ghKb;#>[email protected];#0‡74Q0QIJ<B.1.h>(58;=4$M'DKb<:'W'.T0:'D2@Kh'> ''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''—'—FhFh&m
&(&('' &
^
]
K
N
;
Y
7
$
i
J
k
T
.
:
4
;
^
N
5
O
@
7
9
Q
4
:
0
#
;
Q
<
*
2
(
>
S
R
S
W
;
:
0
,
K
N
£
4
'
'
'
D
'
'
'
D
'
'
=
'
'
D
'
'
'
D
'
'
'
'
D
'
'
=
'
C
'
=
'
'
'
D
'
'
'
D
'
'
'
=
'
C
'
=
'
'
D
'
'
'
'
—
'
h
F
x
x&(–L' 9x(0Q'@)7*2@;#<6†.T0B>J.1.10Q7@2@?4:0:4:2X@2 #5 4P.T7!'.1'I'DI(<:'K”.b'5Q'=,S'CM Kh'=<3'Kh9'D0Q'7*2@;#'<6'N†;#'D0:';58'0:2@'DKh>¤''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''—'—FhEhx|
&(&('' x(x('e'eFE VLVL2@;#4:g0O2X.1.1>J0Q582@KhO; >iuk/i$kJ.14:.1;_4QN^;NKhKb990Q7@0:2*7@;2@<…;#<6NN;0:;;0:5O;0Q5O2@0QKh2@Kh> >c'''''D'D'''='='''D'D'''''D'D'''''''D'D'''='='C'C'='='''''D'D'''''D'D'''''='='C'C'='='''D'D'''''''—'—EEhF)
&('*)_|‘9(WSW.T<:?¥'''D' ''D'''='C'=''D''''D'''D''=''D'''D''''D''='C'='''D'''D'''='C'=''D''''—EhE
)
*1 2436587:9'7<;>=@?BA4CD=FEGABHI!9J#"=F9$KJ%'LN&(M'*?BEG)AOK+-ABP-,*./7<,9*QGABHR9S=@?'TU9=F?BVQGABQWH@XWYZHRP-[*?47]\_^8=FE`=ba#cRd`7De`EGQ!28282f28282f282822g2282f2828282
*1*1 24243I3I2B2ml3 T#5inR7<9'nI;G7<7<;`n=F?B=FABEGC/AB=FHIEj9JA4HI=F9-9HIKJ9J=@Qj['EG[';j;jMSHDe`\oEGM*ABPp;G7/=FKEGABK'HI9b=FE`AB=k9-Qj[S28=F2fEjAO28=F?q2=F289K-2f28Pr28M*?42fEjAB28Pr287/K28AO=82fK'28=F2E`=f2gnI27<9'287<28;`=F2f?BAB28C/=F28EjA42fHI9s282828222g2g2228282f2f28282828282822
*1*1 24243I3I2m2 th 5i5i7<7<9'9'7<7<;`;`=F=F?B?BABABC/C/=F=FEjEjA4A4HIHI9-9-H@HIXu9JHRABcR9'd]{*7/7<e`;GEUABEGAO7DKKJ7:9v=@Ej9SAxwSKp7<K;GQ87<;j=FA4~I9S7/KyKye`['?O=F;GQjHIQ>[SzF7:Qj;GM'EGc$AB7<e`Q?O=FQG28Q#28{'AB287<;>2f=@;>28ej{'2AB2g7<Q|2282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
*1*1 24243I3I2m2m}‚ 5iYZ?O7<=@9'QG7<Q„;`ƒ„cS=F?B=@ABQGC/7/=FKyEjA4HInR9-7:9'HI7<9N;>=@e]?BA4?€CD=@=FQGQUEGABHIe`HI9NP-=@[9SHRKrQjA4PyEjABABHR9'9rAB9'{'nfAB7<HR;`cR=Fd];>7/eje`{'EUAB7<K'Q=@E>28=r2fe`M'28c287<Q(282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 lk1*pL 2 l*AB9'2B3 AB9'nr…o…[S[S=F=@EjEGA€AO=@=F?q?qK'^8=F=@E`=bE>=Fe]cM'=FcSQG7(7:Q†e`HR2g9'Qj2EG;j28MS2fe`EG28ABHI289‡28=F9S2fKy28Qj28[S2f=FEj28A€=@2?qa828ˆ$2fT28‰Š282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 l*l*2m2mlh …o…o[S[S=F=FEjEjA€A€=@=@?q?qej=F{SQjQG=FH';`e`=RAOe`=FEjEj7<A4;GHIAB9JC/=@=@EG9SABHR=F9Œ?BVQG2fABQ28282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 l*l*22mt} …o…o[S[S=F=FEjEjA€A€=@=@?q?qe`e`?O?BM'=FQjQGQGEjAx7<wŽ;Ge<AB9'=@nrEGABHRPy9p7<=FEG{*9SHoKyKo['Q;j287/K28AOe`28EGAB2fHI9 28282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 hk1*Lp2 h*BA 9'B2 3 AB9'n(…o‘A4PyABP-AB?€7`=@ƒG;G…AB7<E„V8;jAB7<QGQ7/=@^8;>ej=@{sE>=FABc9p=FEGQGAB7:P-QU7]=Fƒ“9SQjKy7<;GAB7<7<QUP-=@9S[=FHR?B;`V=FQG?$ABQ”^8=FE>2=@28cS=F2fQj7<28Q’282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 h*h*m2m2 lh ‰–;j7<7<;j9SABHoKpKoA€=Fe]9SA4E„=@V-?BVv=@Qj9SABQ•=F?BV28QGAB2QU2g2g2228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 h*h*2m2 t} …o‰š7/?€=@—I9-M'7<Py9EGA4AO9*=FA4?$9*[nf=FcEGV-Ej7<K;G9˜AB~vP-AOKAB7]9'ƒ›=@AB9'9Sn™KIƒG28e`HR289S—I28M'2f7:;-2828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 t Lp1*2 tAB9'2B3 BA 9'n( 7`7`\'\'EUEUK'^8=@=FE>=(E>=@=FcS9S=F=@Qj?B7<VvQ‘Qj28ABQ2=@2g9SKy2A4289oX2fHR;j28PJ28=F28EjAB2fHR9(28;G287<Ej2f;GAB287<~R2=F28?‘2f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 tt2m2mlh ##^ 7<H'Ve`M'žZPyHR;`7<KI9ƒ“Ec=Fe]?€QG=@7DQGKsQjAŸ=Fw$Qje<QG=FH'Eje`A4AOHI=F9sEjA4=FHI9S9J=@=@?4V9SQj=FA4?BQ”VQGAB28Q‘28282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 }k1*1*Lp22 t}*AB9'22Bt3 AB9'nrT#…oLpA4'M Py'M EGHI?BBA Ej?€PJ=@A4Py;G=@ABE„7/EGV87/KK_AOQG=87/7`=@^8\';>EGej=F;>{sE>=I=@e`ABcSEG9pAB=FHIQjPr9J7<QbM'H@?B28XuEGABQjPr2fEG;G287/MK28e`AOEG=828M'K';j2f7<=@Qf28E>=AB289-2f2fEj7`2828\'22E2828KH'2f2fe`2828M*P-28287<2f2f92828EGQ28282828282f2f2f2828282222g2g2g2222828282828282f2f2f2828282828282f2f2f2828282828282222g2g2g2222828282f2f2f282828282828282828222
1*1*22 }*}*2m2mlh LNLNM'A49*?BGE4A 9*Axƒ›n KoA4=@PyQGQG7<H'9'e`QjAOA4=@HIEG9SABHR=F9'?Q‘=F9SAB9y=@?4PrVQjM'A4QZ?BEGHFABPrXPr7/KM'AO?B=8EGABK'Pr=F7/E`=KAO=82K'=@28E>2f=62828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 ‚k1*Lp2 ‚*AB9'2B3 AB9'n(¡EG{*7:7c-¡ -P HIAB;G9'?OABKI9'ƒ„n(¡¢=FAO9SKKy7`ƒ„=r¡e`7<?Oc£=FQGQjAx28wŽ2fe<=F28EjAB28HR9p28HF2fX28¡287<2fcp28P-2AB9'28AB9'2fn828E>28=@QG2f¤Q-28282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*1*22 ‚*‚*2m2mlh ¡¡7:7:c-c-'MGQ EjQ`;G=FMSnRe]7gEGM'P-;j7bAB9'PyAB9'A4n¥9*A49*2gn228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
1*2 ‹k1*…M*2 ‚*P-2 t PJ=@¡;GV•7:cJ28`e 82HI9v2fEj7<28928EU2fPy28A49*28A49*2n¦2g2228282f2f2828282828282f2f282828282f2f28282228282f2f282828282f2f2828282828282f2f2828222g2g22282828282f2f282828282f2f28282828222g2g2228282f2f28282828282822
3
0h
ht
}
11
11
œ1
œœ
œœ
œœ
œœ
œœ
‹‹
‹‹
‹‹
‹‹
‹‹
‚‚
}}
456748/9-:;9=<?>A@B>A@BC=D'E!E"F7>HGI#9-$:J>A&KL%'@MN&6O(*6P)&6/+-6Q,.&6/(6/%/6/06Q16/6/6Q26/6P6/6Q06/6/6Q6/6/6/6Q6/6P6O6P6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6
[email protected]:JMW[I:WF7FAKL>7XYCL[I>[email protected]:u[#\t'8/U[I9-cJ:]v_9^Dd<_@>7MJ@wx>7@[IC^cJ>7@`CKaKLwyF7M&>7:Wb0z{KLcd8/8'9-:]KS9^Xe<_9">7>7@.@fh>7gi@EjC^[#`Gk>m[#lnGJGVz@Dd>HE|LEUF7[I>HM}GI9":W>76PKS@6OM16P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66
456po~'45:W6pzBo[I67cd41`y‚'z>7[€MWXYUj9"[IFƒMy9-KL@j@e\_8/9-U„9-:;\.9>7K…<_\>79"@:]>79O@CXY>7@6Q>76/@C†6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6P6P6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66
44556p6poo6p6po‡R‡gBTVG;KL>7XY[[email protected]:W>ˆl‰[Ic]G/G;>H\9"9-Fj:;8/9^9-XY:]9^>7@<_>7@>7CŠ@>7@6/C6Qg.6/v.MW6/:J[I6/XY6QMy6/9-@j6/\_6Q‹6/cJ6PKS:J6/KS:s6Qv.6/Ej[€6/MŒ6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66
44556p6 ŽR`g.KcW[€G;@j>H9"\.FnMPqsXY9"@jEj\Y9LG;:W[IMVMWK-[bx9-c]8/GJz{9-:;qs9=MJMW<_U[€>7@MP>7>7@@_C8P9"6Q:]6/9^6/<_6/>7@6Q>7@6/C‘6/6Q6Q6/6/6P6P6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6/6/6Q6Q6/6/6P6P6O6O6P6P6/6/6/6/6Q6Q6/6/6/6/6Q6Q6/6/6/6/6P6P6O6O6P6P6/6/6Q6Q6/6/6/6/6/6/66
456p’g.UBXYXe9"cWvŠ6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6Q6/6/6Q6/6P6/6Q6/6/6Q6/6/6/6Q6/6P6O6P6/6/6Q6/6/6Q6/6/6P6O6P6/6Q6/6/6/6
4
3R
RR
RR
RR
Ž
RŽ
Related documents