Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
3-4 Parallel Lines and the Triangle Angle Sum Theorem In this study guide you will learn about the interior and exterior angles of a triangle, different types of triangles and two new theorems. ** Theorem 3-12 Triangle Angle Sum Theorem** The sum of the measures of the angles of a triangle is 180˚ To prove Theorem 3-12 Draw line CP parallel to line AB----------------------By Protractor Postulate m1 + m2 + m3=180------------------------------Definition of a Straight Line mA m1----------------------------------------------Alternate Interior Angles mB m2-----------------------------------------------Alternate Interior Angles mA + mB + m 3=180-----------------------------Substitution Easy Practice Problems Using Theorem 3-12 Classifying Triangles by Angles and Sides Exterior Angle of a polygon: the angle formed by a side and the extension of an adjacent side Remote Interior Angles: The two angles that are not adjacent to the exterior angle **Theorem 3-13 Triangle Exterior Angle Theorem** The measure of each exterior angle of a triangle is the sum of the measures of the its two remote interior angles Proof for Theorem 3-12 m2 + m3 + m4=180------------------------------Triangle Angle Sum Theorem m1 + m4 =180---------------------------------------Definition of a Straight Line m1 + m2 + m3= m1 + m4 ------------------Substitution m1 = m2 + m3-------------------------------------Subtraction Property of Equality Easy Practice Problems Using Theorem 3-13 (#20 may use another theorem as well. HINT.) Some Slightly Complicated Problems 27. And Just One More Proof ANSWERS Practice Problems for Theorem 3-12 1. 117+33+ m1=180 150+ m1=180 m1=30 2. 44.7+52.2+ m1=180 96.9+ m1=180 m1=83.1 3. 33+57+ m1=180 90+ m1=180 m1=90 Slightly Complicated Problems 23. 90+(8x-1)+(4x+7)=180 90+12x+6=180 96+12x=180 12x=84 x=7 24. (2x+4)+(2x-9)+x=180 Practice Problems for Theorem 3-13 18. 60+63= m1 m1=123 19. 128.5= m2 +13 115.5= m2 20. m4+ 45+47=180 m4+92=180 m4=88 -Angles are 90, 55, and 35 -This is a Right Triangle -Angles are 78, 65, and 37 45+47=m3 92= m3 5x-5=180 5x=185 x=37 -This is an Obtuse Triangle 25. y+54+90=180 y+144=180 y=36 26. 55+c=180 c=125 z=90 c+d+32=180 125+d+32=180 157+d=180 d=23 x+z+52=180 x+90+52=180 x+142=180 x=38 32+b=90 b=58 -Triangle ABD and CBD are Right Triangles -Triangle ABC is an Acute Triangle a+b+55=180 a+58+55=180 a+113=180 a=67 d+a=e 23+67=e 90=e -Triangle EFH is an Obtuse Triangle -Triangle GFH is an Acute Triangle -Triangle EFG is a Right Triangle 27. (2x-23)+38+x=180 3x-23+38=180 3x+15=180 3x=165 x=55 x=y 55=y y+ (4w-5)+w=180 55+5w-5=180 50+5w=180 5w=130 w=26 -Angles for Triangle on the Right: 87, 38 and 55. This is an Acute Triangle -Angles for Triangle on the Left: 55, 26, and 99 34. mC=90-------------------------------------------------Given mA + mB + mC=180----------------------------Triangle Angle Sum Theorem mA+ mB+90=180----------------------------------Substitution mA+ mB=90-----------------------------------------Subtraction Property of Equality