Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATH 201 - Week 10 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos are made using MAPLE 11 and ImageMagick-convert. Overview Trigonometric Identities - Section 7.1 Trigonometric Identity vs Trigonometric Equation The Starting Point: Fundamental Trigonometric Identities Simplifying Trigonometric Expressions Proving Trigonometric Identities Trigonometric Identity A trigonometric identity is an equation of trigonometric expressions in θ valid for all values of θ. For example sin2 θ + cos2 θ = 1 is valid for all θ. Trigonometric Equation A trigonometric equation is an equation of trigonometric expressions in θ valid for some particular values of θ. For example sin θ + cos θ = 1 is valid for θ = 0 but it is invalid for θ = π4 . Fundamental Trigonometric Identities Reciprocal Identities csc x = 1 sin x sec x = tan x = sin x cos x 1 cos x cot x = cot x = 1 tan x cos x sin x Pythagorean Identities sin2 x + cos2 x = 1 tan2 x + 1 = sec2 x 1 + cot2 x = csc2 x Even-Odd Identities sin(−x) = − sin x cos(−x) = cos x tan(−x) = − tan x Cofunction Identities sin π − x = cos x 2 π cos − x = sin x 2 tan cot π 2 π 2 − x = cot x − x = tan x sec csc π 2 π 2 − x = csc x − x = sec x Although these are considered to be fundamental identities, it is more convenient to prove them later on. Example. Simplify the trigonometric expression sin t + cos t cot t. Solution. cos t sin t 2 2 sin t + cos t sin t 1 sin t sin t + cos t cot t = sin t + cos t = = = csc t. Example. Simplify the trigonometric expression cos x sin x + . sin x 1 + cos x Solution. sin x cos x + sin x 1 + cos x = = = = cos x(1 + cos x) + sin2 x sin x(1 + cos x) cos x + cos2 x + sin2 x sin x(1 + cos x) cos x + 1 sin x(1 + cos x) 1 sin x = csc x. How to prove a trigonometric identity? We transform one side of the equation into the other side by using a sequence of steps. Hints I Start with one side (take the more complicated one). I Use the fundamental identities and perform algebraic manipulations. I In case of an emergency, write all expressions in terms of sines and cosines only. I PRACTICE!!! Example. Prove the identity sec x − cos x = sin2 x. sec x rewriting it in terms of sines and cosines. Solution. The LHS is LHS = = = sec x − cos x sec x 1 cos x − cos x 1 cos x 1−cos2 x cos x 1 cos x 2 = 1 − cos x cos x · cos x 1 1 − cos2 x = sin2 x = = RHS. Example. Verify the identity 1 1 + = 2 sec x. sec x + tan x sec x − tan x Solution. LHS = = = = = 1 1 + sec x + tan x sec x − tan x sec x − tan x + sec x + tan x (sec x + tan x)(sec x − tan x) 2 sec x sec2 x − tan2 x 2 sec x 1 2 sec x = RHS. Example. Verify the identity sin4 t − cos4 t = sin2 t − cos2 t. Solution. LHS = sin4 t − cos4 t = sin4 t − (cos2 t)2 = sin4 t − (1 − sin2 t)2 = sin4 t − (1 − 2 sin2 t + sin4 t) = sin4 t − 1 + 2 sin2 t − sin4 t = −1 + 2 sin2 t = −(sin2 t + cos2 t) + 2 sin2 t = − sin2 t − cos2 t + 2 sin2 t = sin2 t − cos2 t = RHS. Example. Verify the identity 1 + tan2 u 1 . = 2 2 1 − tan u cos u − sin2 u Solution. 1 + tan2 u LHS = 1 − tan2 u = = = = = sin u 2 cos u sin u 2 1 − cos u cos2 u+sin2 u cos2 u cos2 u−sin2 u cos2 u cos2 u + sin2 u 1+ · cos2 u cos2 u − sin2 u cos2 u + sin2 u cos2 u − sin2 u 1 = RHS. 2 cos u − sin2 u cos2 u Example. Verify the identity tan v − sin v tan v sin v = tan v + sin v tan v sin v Solution. LHS = tan v sin v tan v + sin v = = = = = sin v cos v sin v sin v cos v + sin v sin2 v cos v sin v +sin v cos v cos v 2 sin v cos v · cos v sin v + sin v cos v sin2 v sin v + sin v cos v sin v 1 + cos v Solution (cont). RHS = tan v − sin v tan v sin v = = = = = = = sin v cos v − sin v sin v cos v sin v sin v −sin v cos v cos v sin v cos v cos v sin v − sin v cos v cos v · 2 cos v sin v 1 − cos v sin v 1 − cos v 1 + cos v · sin v 1 + cos v 2 1 − cos v sin v (1 + cos v ) sin2 v sin v = . sin v (1 + cos v ) 1 + cos v