Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-1 LECTURE 170 – INTUITIVE ANALYSIS OF ANALOG CIRCUITS (READING: AH – 191-193) Objective The objective of this presentation is: 1.) Illustrate how to perform a small-signal, midband analysis from the schematic 2.) Introduce the Miller technique and the approximate method of solving for two poles Outline • Key concepts in CMOS analog IC circuit analysis • Intuitive approach • Examples • Summary ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-2 IMPORTANT RELATIONSHIPS FOR CMOS ANALOG IC DESIGN 1.) Square law relationship: K’W iD = 2L (vGS - VT)2 2.) Small-signal transconductance formula: 2K’WID L 3.) Small-signal simplification: gm ≈ 10gmbs ≈ 100gds 4.) Saturation relationship: gm = VDS(sat) = 2ID K’(W/L) ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-3 An Intuitive Method of Small Signal Analysis Small signal analysis is used so often in analog circuit design that it becomes desirable to find faster ways of performing this important analysis. Intuitive Analysis (or Schematic Analysis) Technique: 1.) Identify the transistor(s) that convert the input voltage to current (these transistors are called transconductance transistors). 2.) Trace the currents to where they flow into an equivalent resistance to ground. 3.) Multiply this resistance by the current to get the voltage at this node to ground. 4.) Repeat this process until the output is reached. Simple Example: VDD VDD R1 gm1vin vin M2 vo1 gm2vo1 vout R2 M1 Fig. 5.2-10C vo1 = -(gm1vin) R1 → vout = -(gm2vo1)R2 → vout = (gm1R1gm2R2)vin ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-4 Intuitive Analysis of the Current-Mirror Load Differential Amplifier VDD M4 M3 gm1vid gm1vid 2 2 M1 gm1vid gm2vid 2 2 + vid 2 M5 VBias + vid rout + M2 vid vout + 2 Fig. 5.2-11 1.) 2.) 3.) i1 = 0.5gm1vid and i2 = -0.5gm2vid i3 = i1 = 0.5gm1vid i4 = i3 = 0.5gm1vid 4.) 1 The resistance at the output node, rout, is rds2||rds4 or gds2 + gds4 gm1vin gm2vin vout gm1 5.) ∴ vout = (0.5gm1vid +0.5gm2vid )rout = g +g = g +g ⇒ v = g +g ds2 ds4 ds2 ds4 in ds2 ds4 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-5 Some Concepts to Help Extend the Intuitive Method of Small-Signal Analysis 1.) Approximate the output resistance of any cascode circuit as Rout ≈ (gm2rds2)rds1 where M1 is a transistor cascoded by M2. 2.) If there is a resistance, R, in series with the source of the transconductance transistor, let the effective transconductance be gm gm(eff) = 1+gmR Proof: gm2(eff)vin gm2(eff)vin M2 gm2vgs2 iout + vgs2 - M2 vin vin M1 vin rds1 rds1 Small-signal model VBias Fig. 5.2-11A vin ∴ vgs2 = vg2 - vs2 = vin - (gm2rds1)vgs2 ⇒ vgs2 = 1+gm2rds1 gm2vin Thus, iout = 1+g r = gm2(eff) vin m2 ds1 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-6 Miller Two-Stage Op Amp VDD M6 M3 M4 Cc vout M1 M2 vin Assume proper M5 common mode + input voltage VBias - ECE 6412 - Analog Integrated Circuit Design - II M7 VSS Fig. 170-01 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-7 Miller Two-Stage Op Amp VDD M6 M3 M4 Cc vout vin M1 + vin 2 - M2 Assume proper M5 common mode + input voltage VBias - vin 2+ M7 Fig. 170-01 VSS ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-8 Miller Two-Stage Op Amp VDD M6 M3 gm1vin 2 vin M1 + vin 2 - Assume proper M5 common mode + input voltage VBias - ECE 6412 - Analog Integrated Circuit Design - II M4 Cc vout gm2vin 2 M2 vin 2+ M7 VSS Fig. 170-01 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-9 Miller Two-Stage Op Amp VDD gm1vin 2 gm1vin 2 M3 gm1vin 2 vin M1 + vin 2 - Assume proper M5 common mode + input voltage VBias - M4 M6 Cc vout gm2vin 2 M2 vin 2+ M7 Fig. 170-01 VSS ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-10 Miller Two-Stage Op Amp VDD gm1vin 2 gm1vin 2 M3 gm1vin 2 vin M1 + vin 2 - Assume proper M5 common mode + input voltage VBias - ECE 6412 - Analog Integrated Circuit Design - II M4 Ro1=rds2||rds4 vo1 + M6 Cc vout gm2vin 2 M2 vin 2+ M7 VSS Fig. 170-01 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-11 Miller Two-Stage Op Amp VDD gm1vin 2 gm1vin 2 M3 M4 Ro1=rds2||rds4 gm1vin 2 vin vo1 + Cc gm2vin 2 M2 vin 2+ M1 + vin 2 - Assume proper M5 common mode + input voltage VBias - M6 gm6vo1 vout Rout=rds6||rds7 M7 Fig. 170-01 VSS vout gm1 -gm6 -gm1gm6 vin = gds2+gds4 gds6+gds7 = (gds2+gds4)(gds6+gds7) ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-12 Folded-Cascode Op Amp VDD VBias M10 M3 M1 M2 M8 vin M11 M9 vout M6 M7 VBias VBias M4 M5 ECE 6412 - Analog Integrated Circuit Design - II VSS Fig. 170-02 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-13 Folded-Cascode Op Amp VDD VBias M10 M3 vin + vin 2 +2 M1 M2 - M8 vin M11 M9 vout M6 M7 VBias VBias M4 M5 VSS ECE 6412 - Analog Integrated Circuit Design - II Fig. 170-02 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-14 Folded-Cascode Op Amp VDD VBias vin M10 M3 vin + vin 2 +2 M1 M2 gm1vin gm2vin 2 2 M8 M11 M9 vout M6 M7 VBias VBias M4 M5 ECE 6412 - Analog Integrated Circuit Design - II VSS Fig. 170-02 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-15 Folded-Cascode Op Amp VDD VBias vin M11 M10 M3 vin + vin 2 +2 M1 M2 gm1vin gm2vin 2 2 M8 M9 vout M6 M7 VBias gm1vin 2 gm2vin 2 VBias M4 M5 VSS ECE 6412 - Analog Integrated Circuit Design - II Fig. 170-02 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-16 Folded-Cascode Op Amp VDD VBias vin M11 M10 M3 vin + vin 2 +2 M1 M2 gm1vin gm2vin 2 2 gm1vin M8 2 M9 vout M6 M7 VBias gm1vin 2 gm2vin 2 gm2vin 2 VBias M4 M5 ECE 6412 - Analog Integrated Circuit Design - II VSS Fig. 170-02 © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-17 Folded-Cascode Op Amp VDD VBias vin M11 gm1vin 2 M10 M3 gm1vin 2 gm1vin M8 2 vin + vin 2 +2 M1 M2 gm1vin gm2vin 2 2 M9 vout M6 M7 VBias gm2vin 2 gm1vin 2 gm2vin 2 VBias M4 M5 VSS Fig. 170-02 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) Page 170-18 Folded-Cascode Op Amp VDD VBias vin M11 gm1vin 2 M10 gm1vin 2 gm1vin M8 2 M3 vin + vin 2 +2 M1 M2 gm1vin gm2vin 2 2 M6 M7 VBias gm1vin 2 M9 vout Rout = [gm9rds9rds11] gm2vin ||[gm7rds7(rds2||rds5)] 2 gm2vin 2 VBias M4 M5 VSS Fig. 170-02 vout gm1 gm2 vin = 2 + 2 Rout = gm1{(gm9rds9rds11)||[gm7rds7(rds2||rds5)]} ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002 Lecture 170 – 1 Stage Frequency Response (1/10/02) • • • • Page 170-19 SUMMARY Intuitive method is quick and simple Intuitive method is approximate (misses the unbalance of the folded cascode) Intuitive method does not give any information about frequency response The intuitive method can be used with BJT circuits assuming β >>1 and including rπ in the resistance calculations ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002