Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MOS-AK Meeting, September 16, 2005 The EKV3.0 MOS Transistor Model A Design-Oriented Compact Model for Advanced CMOS Matthias Bucher Technical University of Crete (TUC) Outline Basic charge model Extensions to charge model Total charges modeling Mobility modeling Noise modeling EKV3.0 summary – effects & parameters Application – EKV3.0 DC scaling Noise, RF - NQS, Load-Pull Summary M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 2 Basic charge model structure CORE: Charge Model EXTENSIONS Quasi-Static Effects EXTENSIONS NQS Effects EXTENSIONS Noise M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 3 Inversion charge linearization Inversion charge vs. surface potential (fixed VG) is essentially linear Explicit use of linearization defines charge linearization factor nq Intersection with x-axis defines pinch-off surface potential Yp 2q si N sub YP VG VFB s s ( s ) 2 VG VFB where s 2 Cox 2 Related concepts of pinch-off voltage Vp and slope factor nv Use the same parameters (Tox, Nsub, VFB) as surface potential model © M. Bucher TUC 2005 Workshop on Compact Models – Anaheim, 10-12 May 2005 4 Inversion charge linearization Relation between inversion charge and surface potential dYS 1 dQi dx dx nqCox Linear relationship among Qi and YS: nq is the inversion charge linearization factor dI dVch Relationship among channel conductance and Qi Current & charge normalization Voltage-charge relationship (VG VFB YS YS ) Qi Cox c.f. also UCCM1993, ACM1995; Bucher e.a. ISDRS 1997 Drain current including drift & diffusion terms Symmetric forwardreverse operation, valid in all modes of inversion © M. Bucher TUC 2005 I Spec 2nq Cox x W (Qi( x)) L W 2 UT L 2nq Cox U T2 QSpec vP vch 2qi ln( qi ) where v I D W (Qi) Q V , qi i UT QSpec dVch dY dQi W (Qi S U T ) dx dx dx I D I Spec (i f ir ) where i f ( r ) q iS2 ( D ) q iS ( D ) Workshop on Compact Models – Anaheim, 10-12 May 2005 5 Surface potential & “charge” model 3.0 Ys [V] 2.5 VS=2 V Numerical EKV 1.5 V 2.0 1V 1.5 0.5 V 1.0 0V 0.5 Vs = 2V 0.0 -0.5 -2 -1 0 1 2 3 4 VG – VFB [V] Surface potential vs. VG – approximation by EKV “charge” model “Charge” model needs to be adequately extended to cover depletion/accumulation Uses physics-based expressions, no fitting parameters involved © M. Bucher TUC 2005 Workshop on Compact Models – Anaheim, 10-12 May 2005 6 Charge model extensions Charge model extensions for <100nm CMOS: Bias-dependent overlap & inner fringing capacitances NQS model via channel segmentation Mobility/Velocity sat. & CLM Short-channel thermal noise Gate tunneling NQS noise M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 7 CV long-channel -- 120nm CMOS 1.0 0.6 0.4 0.2 0.0 -1.5 C11n NMOS Long-Wide CGG Vc=0V EKV3.0 CGC Vc=0V EKV3.0 CGC Vc=0.5V EKV3.0 CGC Vc=1V EKV3.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 1,0E-09 8,0E-10 dC/dV [F/V] C / Cox*Weff*Leff [-] L > 100um 0.8 6,0E-10 4,0E-10 2,0E-10 0,0E+00 -2,0E-10 dCGG/dVG EKV3.0 -4,0E-10 2.5 -6,0E-10 -1,5 -0,5 VG [V] 0,5 1,5 VG [V] Normalized CV characteristics Shows correct modeling of accumulation-depletion-inversion Long-Wide NMOS transistors, Ldrawn=100um Normalization w.r.t. C’ox*Weff*Leff M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 8 Short-channel effects in charge model Modeling of short-channel effects in charge/capacitances Non-uniform doping, QME, PDE,…. … effects get naturally coupled into the charges model Additionally, account for CLM & VSAT in transcapacitances Effective channel length for charges/capacitances Leff,C may differ from Leff used for IV Bias-dependent overlap charge/capacitance model Accounts for QME, PDE effects Inner fringing charge/capacitances MOS capacitor/varactor modeling M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 9 CV short-channel -- 120nm CMOS C / Cox*Weff*Leff [-] 1.4 L = 120nm 1.2 1.0 0.8 CGG Vc=0V EKV3.0 CGC Vc=0V 3,5E-11 EKV3.0 3,0E-11 CGC Vc=0.5V EKV3.0 2,5E-11 CGC Vc=1V2,0E-11 EKV3.0 0.6 0.4 0.0 -1.5 CGG EKV3.0 CGC EKV3.0 CGB EKV3.0 C [F] 0.2 C11n PMOS Short-Wide 1,5E-11 -1.0 -0.5 0.0 0.5 1.0 1.5 VG [V] 2.0 1,0E-11 2.5 5,0E-12 0,0E+00 -1,5 -1 -0,5 0 0,5 1 -VG [V] Normalized CV characteristics Shows correct modeling of overlap & inner fringing capacitance Short-Wide NMOS transistors, Ldrawn=120nm Normalization w.r.t. C’ox*Weff,C*Leff,C M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 10 1,5 Extensions of static effects (EKV3.0) Vertical/lateral non-uniform doping effects Polydepletion/quantum effects Vertical field mobility, based on effective field Velocity saturation/channel length modulation DIBL, charge-sharing RSCE, INWE, combined short&narrow-channel effects Halo/Pocket implant effects including @long channel Bias-dependent series resistance model Optional internal, bias-dependent, charge-based series resistance Avoids internal nodes -- increases efficiency Gate tunnelling Natural partitioning Geometry & temperature scaling M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 11 Charge-based mobility modeling Effective-field based mobility modeling Surface-roughness scattering (high vertical field) Phonon-scattering intermediate field strengths Coulomb scattering effects (low vertical field; particularly at very high Nsub, low T) Eeff Qb Qi 5 parameters in all: E0, E1, ETA, THC, ZC Local mobility is integrated along the channel M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 12 Integral mobility bias dependence Mobility versus VG, VD – EKV3.0 simulation Coulomb scattering (low Eeff), surface roughness scattering (high Eeff) Saturation behaviour is included naturally M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 13 Velocity saturation/CLM modeling Consider a variable-order (1st- 2nd) velocity-field relationship Requires 2 parameters: UCRIT, DELTA [1..2] New charge-based channel length modulation (CLM) model. Continuous at VD=VS LAMBDA M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 14 EKV3.0 model parameter list (1/3) Setup pars. SIGN TG SCALE QOFF 1 (nmos), -1 (pmos) -1 (enhancement) 1 (depletion) scaling factor L, W charge model off Oxide, Substrate and Gate Doping related pars. (7) COX oxide capacitance XJ junction depth VTO threshold voltage PHIF fermi-bulk voltage GAMMA body factor GAMMAG gate factor N0 long channel slope Quantum Mechanical effect (3) AQMA AQMI ETAQM QME accumulation QME inversion QME coefficient Vertical Field Mobility effect (6) transconductance fact. 1st order coefficient 2nd order coefficient QB and QI balance Coulomb sc. Par. 1 Coulomb sc. Par. 2 Mobility geometrical pars. (4) KP E0 E1 ETA ZC THC LA LB KA KB char. mobility length A char. mobility length B char. mobility factor A char. mobility factor B Velocity Saturation & CLM (4) UCRIT DELTA LAMBDA ACLM critical long. field order of vsat model CLM effect pocket implant factor M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 15 EKV3.0 model parameter list (2/3) Long-channel LVT AVT LR QLR NLR INWE (3) WR QWR NWR VTO corr. char. length VTO corr. factor RSCE char. length RSCE factor charge RSCE factor doping Halo-related gds degradation (5) FPROUT PDITS PDITSL PDITSD DDITS INWE char. length INWE factor charge INWE factor doping Gate current pars. (3) XB crit. difference potential EB crit. electrical field KG transc. factor Igate VT & RSCE (5) Charge Sharing effect (5) LETA0 Long-ch. CS factor LETA 1st order CS factor LETA2 2nd order CS factor NCS CS slope factor degr. WETA Narrow-ch. CS factor DIBL effect (2) ETAD char. length factor DIBL SIGMAD bias factor DIBL Impact ionization (3) IBA II current factor A IBB II current factor B IBN II current coefficient Overlap & fringing capacitance (6) GAMMAOV overlap body factor VFBOV overlap flat-band voltage LOV overlap length VOV overlap bias factor KJF inner fringing cap. par. CJF inner fringing cap. factor M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 16 EKV3.0 model parameter list (3/3) Geometrical pars. (10) DL gate length offset DLC gate length CV offset DW gate width offset DWC gate width CV offset LDW short-ch. DW correct. WDL narrow-ch. DL correct. LL hyperbolic length fact. LLN exp. Length fact. XL XW LIBB length scaling IBB Width Scaling WE0 WE1 WUCRIT WLAMBDA WETAD WQLR WNLR WLR WIBB pars. (9) width scaling E0 width scaling E1 width scaling UCRIT width scaling LAMBDA width scaling ETAD width scaling QLR width scaling NLR width scaling LR width scaling IBB Temperature effects (12) TNOM nominal temp. BEX KP temp. coeff. TE0EX E0 temp. coeff. TE1EX E1 temp. coeff. TETA ETA temp. factor UCEX UCRIT temp. coeff. TLAMBDA LAMBDA temp. fact. TCV VTO temp. coeff. TCVL short-ch. VTO temp. coeff. TCVW narrow-ch. VTO temp. coeff. TCVWL short-narr.-ch. VTO temp. coeff. TIBB IBB temp. factor NOTE: this list is subject to modification M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 17 Parameter extraction Principle of EKV3.0 parameter extraction for CV and IV vs. L, W & Temp. M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 18 Short-channel characteristics L = 70nm L=70nm VD=1.5V L=70nm VD=1.5V 8.0E-01 1.0E-02 6.0E-01 GM*UT/ID [-] 1.0E-04 1.0E-05 ID [A] measured EKV3.0 7.0E-01 1.0E-03 1.0E-06 1.0E-07 5.0E-01 4.0E-01 3.0E-01 2.0E-01 1.0E-08 measured EKV3.0 1.0E-09 1.0E-01 0.0E+00 1.0E-10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1.00E-08 1.00E-07 VG [V] 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 ID [A] Correct weak & moderate inversion behavior Smoothness and correct asymptotic behavior Correct weak inversion slope and DIBL modeling Transconductance-to-current ratio vs. drain current (log. axis) M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 19 VTO [a.u.] ID,sat / (W/L) [-] Scaling example 90nm CMOS 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-08 1.0E-07 Lg [m] 1.0E-06 1.0E-05 Lg [m] 1.30 ID, lin / (W/L) [-] 1.28 1.26 n [-] 1.24 1.22 1.20 1.18 1.16 1.14 1.0E-08 1.0E-07 1.0E-06 Lg [m] 1.0E-05 1.0E-08 1.0E-07 1.0E-06 1.0E-05 Lg [m] M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 20 EKV3.0 output characteristics modeling L = 70nm L=70nm VB=-1V L=70nm VB=0V 9.0E-03 8.0E-03 8.0E-03 measured EKV3.0 7.0E-03 6.0E-03 6.0E-03 5.0E-03 5.0E-03 ID [A] ID [A] measured EKV3.0 7.0E-03 4.0E-03 4.0E-03 3.0E-03 3.0E-03 2.0E-03 2.0E-03 1.0E-03 1.0E-03 0.0E+00 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.0E+00 1.8 0 0.2 0.4 0.6 0.8 VD [V] 1 1.2 1.4 1.6 1.8 VD [V] L=70nm VB=-1V L=70nm VB=0V 1.0E-01 1.0E-01 measured EKV3.0 measured EKV3.0 1.0E-02 gds [A/V] gds [A/V] 1.0E-02 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0.2 0.4 0.6 0.8 1 VD [V] 1.2 1.4 1.6 1.8 1.0E-05 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VD [V] M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 21 NQS and noise extensions Non-quasistatic (NQS) model Requires coherent AC and large signal operation Short-channel thermal noise model Induced noise in gate and substrate M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 22 NQS model via channel segmentation G VD’(VD) G VD’(VD) Channel Segmentation S D S D B B Non-quasistatic (NQS) model Approach via channel segmentation (similar to MM11) Requires appropriate handling of short-channel effects Need to ensure coherence among segmented and non-segmented channel for DC aspects Ease of implementation in Verilog-A Number of segments is a parameter M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 23 NQS model @ RF NMOS Lg=80nm (saturation) NMOS Lg=2um (saturation) M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 24 Short-channel thermal noise – contains mobility reduction, carrier heating, vel. sat., CLM effects 4 dsat 3 vd = VD / UT = 70 L = 0.18 m Ec = 2 V/ m (lc = 0.15) q = 0.3, c = 30 nm Scholten (IEDM99) L=0.17 m Chen (TED02) L=0.18 m no MRV, with CLM 2 with MRV, with CLM 1 with MRV, no CLM 0 5 10 15 20 25 no MRV, no CLM 30 35 40 45 vp = VP / UT A.S. Roy, C.C. Enz, Int. Conf. MIXDES, June 2004 M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 25 NQS noise -- induced gate & substrate noise S n,i 2 S n,i 2 S n,i i* 4kT Gnd d s d s S n,i 2 4kT Gng D noiseless In,D g G B In,B In,G In,S S n,i 2 (n 1) 2 S n,i 2 b g S n,i i* S n,i i* 4kT Gngd g d g s S A.-S. Porret, C. C. Enz, IEE Proc. Circuits, Devices & Syst., 2004 Channel thermal noise is the predominant noise source at high frequencies Channel thermal noise is coupled to the gate and to the substrate at high frequencies Previous modeling approaches usually do not cover moderate & weak inversion, ignore coupling to the substrate The NQS modeling approach is consistently extended to model induced gate/substrate noise in all operating regions M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 26 Harmonic distortion 0 Amplitude [dbm] -10 -20 -30 VD=VG, Fundamental EKV3.0 2nd Harmonic EKV3.0 3rd Harmonic EKV3.0 VD EKV3.0 harmonics at RF – 0.14um CMOS -40 -50 ID VG VB VS -60 -20dbm – 30MHz -70 -80 -100 -0.1 f = 30MHz M. Bucher e.a., IEEE ICECS, 2004 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 VG [V] VD=VS Harmonic Distortion vs. Input Power NMOS 40*5um/0.14um VG=1V, VD=VS=0V @ F=1.0 GHz -20 EKV3.0 shows correct simulation of 3rd Harmonic slope vs input power [3dB/dB] -40 ID VG VB VS Output Power dB -90 -60 -80 F1 EKV3.0 F2 EKV3.0 F3 EKV3.0 -100 -120 -140 -40 -35 -30 -25 Input Power dB -20 -15 -10 -- shows correct symmetry&continuity modeling viz. P. Bendix e.a., CICC’2004 M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 27 Large signal verification at RF (1/2) Load Tuner Source 50Ω Freq=2.45GHz S. Yoshitomi, MIXDES 2005 Large-signal characterization: CMOS RF power amplifiers Load-pull simulation setup in ADS M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 28 Large signal verification at RF (2/2) Measured EKV3.0 Gain at 50Ω load vs Input power 24 S. Yoshitomi, MIXDES 2005 22 18 16 Pout Gain [dB] 20 14 12 10 -40 -35 -30 -25 -20 -15 -10 -5 Input Power [dBm] Lg=0.11um, Wf=5.2um, Nf=12 freq = 2.45 GHz VGS=0.9V, VDS=1V indep(Pdel_contours_p) (0.000 to 60.000) IndexPoutdBm (1.000 to 234.000) Gain range 3dB…8.5dB Gain contour @ Pin = -6dBm Gain compression & Gain contour plots Courtesy of TOSHIBA, S. Yoshitomi (Mixdes2005) M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 29 EKV3.0 Summary EKV3.0: a design-oriented, charge-based, compact model for Next Generation CMOS Validated on 120nm, 90nm CMOS, ongoing for 65nm CMOS Number of parameters: ~ 60 (basic intrinsic & overlap cap.) ~ 30 (geometry & scaling parameters) ~ 15 (temperature) Implementations: Verilog-A Beta-code is available to circuit simulator vendors -Simple license agreement needed ELDO (Mentor), ADS (Agilent), Spectre (Cadence), GoldenGate (Xpedion) M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 30 Acknowledgments Antonios Bazigos, Eleni Kitonaki, NTUA For code R&D & support François Krummenacher, Jean-Michel Sallese, Christian Enz, Ananda Roy, EPFL For R&D contributions Wladek Grabinski For Web-site and Verilog-A support S. Yoshitomi, Toshiba J. Assenmacher, Infineon Both for financial support M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 31 EKV References (I) Website [admin. W. Grabinski]: http://legwww.epfl.ch/ekv A. S. Roy, C. C. Enz, “Compact Modeling of Thermal Noise in the MOS Transistor”, IEEE Trans. Electron Devices, Vol. 52, N° 4, pp. 611-614, April 2005. J.-M. Sallese, F. Krummenacher, F. Pregaldiny, C. Lallement, A. Roy, C. Enz, „A Design-Oriented Charge Based Current Model for Symmetric DG MOSFET and its Correlation with the EKV Formalism”, Solid-State Electronics, Vol. 49, N° 2, pp. 485489, February 2005. M. Bucher, A. Bazigos, N. Nastos, Y. Papananos, F. Krummenacher, S. Yoshitomi, „Analysis of Harmonic Distortion in Deep Submicron CMOS“, 11th IEEE Int. Conf. On Electronics, Circuits and Systems (ICECS 2004), pp. 395-398, Tel Aviv, Israel, December 2004. M. Bucher, C. Lallement, F. Krummenacher, C. Enz, “A MOS Transistor Model for Mixed Analog-Digital IC Design”, (Book Chapter 3, 47 p.) in R. Reis and J. Jess (Eds.), in Design of System on a Chip. Devices & Components. ISBN 1-4020-7928-1, Kluwer Academic Publishers, 2004. J.-M. Sallese, F. Krummenacher, P. Fazan, “Derivation of Shockley-Read-Hall Recombination Rates in Bulk and PD SOI MOSFET’s Channels Valid in All Modes of Operation, Solid State Electronics, Vol. 48, N° 9, pp. 1539-1548, September 2004. A. Bazigos, M. Bucher, S. Yoshitomi, “Benchmarking the EKV3.0 MOSFET Model in Verilog-A with 0.14µm CMOS, 11th Int. Conf. on Mixed Design (MIXDES 2004), pp. 104-109, Sczcecin, Poland, June 2004. A. S. Roy, C. Enz, “Compact Modeling of Thermal Noise in the MOS Transistor”, 11th Int. Conf. on Mixed Design (MIXDES 2004), pp. 71-78, Sczcecin, Poland, June 2004. M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 32 EKV References (II) C. Enz, A. S. Roy, “A Comprehensive Study of Thermal Noise in the MOS Transistor”, SPIE Symp. on Fluctuation & Noise, Maspalomas, Spain, May 2004. A.-S. Porret, C. C. Enz, “Non-Quasi-Static (NQS) Thermal Noise Modeling of the MOS Transistor”, IEE Proc. Circuits, Devices and Syst., 2004. ______, SPIE Int. Symp. on Fluctuation and Noise, Santa Fe, USA, June 2003. M. Bucher, D. Kazazis, F. Krummenacher, “Geometry- and Bias-Dependence of Normalized Transconductances in Deep Submicron CMOS”, Workshop on Compact Models, NANOTECH 2004, Boston, March 2004. [Available Online: http://www.ntu.edu.sg/home/exzhou/WCM/WCM2004/wcm04.htm#Slides] C. Lallement, J.-M. Sallese, M. Bucher, W. Grabinski, P. Fazan, "Accounting for Quantum Effects and Polysilicon Depletion from Weak to Strong Inversion in a Charge-Based Design-Oriented MOSFET Model", IEEE Trans. Electron Devices , Vol. 50, N° 2, pp. 406-417, February 2003. J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, "Inversion Charge Linearization in MOSFET Modeling and Rigorous Derivation of the EKV Compact Model", Solid-State Electronics, Vol. 47, pp. 677-683, 2003. M. Bucher, D. Kazazis, F. Krummenacher, D. Binkley, D. Foty, Y. Papananos, “Analysis of Transconductances at All Levels of Inversion in Deep Submicron CMOS”, 9th IEEE Conf. on Electronics, Circuits and Systems (ICECS 2002), pp. 1183-1186, Dubrovnik, Croatia, September 2002. M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 33 EKV References (III) M. Bucher, C. Enz, F. Krummenacher, J.-M. Sallese, C. Lallement, A.-S. Porret, “The EKV3.0 Compact MOS Transistor Model: Accounting for Deep Submicron Aspects”, Workshop on Compact Models-MSM 2002, pp. 670-673, Puerto Rico, April 2002. C. Enz, “An MOS Transistor Model for RF IC Design Valid in All Regions of Operation”, IEEE Trans. Microwave Theory and Tech., Vol. 50, N° 1, pp. 342-359, January 2002. A.-S. Porret, J.-M. Sallese, C. Enz, “A Compact Non Quasi-Static Extension of a Charge-Based MOS Model”, IEEE Trans. Electron Devices, Vol. 48, N° 8, pp. 16471654, August 2001. J.-M. Sallese, M. Bucher, C. Lallement, “Improved Analytical Modeling of Polysilicon Depletion in MOSFETs for Circuit Simulation”, Solid-State Electronics, Vol. 44, N° 6, pp. 905-912, June 2000. J.-M. Sallese, A.-S. Porret, “A Novel Approach to Non-Quasi-Static Model of the MOS Transistor Valid in All Modes of Operation”, Solid-State Electronics, Vol. 44, N° 6, pp. 887-894, June 2000. C. Enz, Y. Cheng, “MOS Transistor Modeling for RF IC Design”, IEEE Trans. SolidState Circuits, Vol. 35, N° 2, pp 186-201, February 2000. C. C. Enz, F. Krummenacher, E. A. Vittoz, “An analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications”, J. AICSP, Vol. 8, pp. 83-114, 1995. M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 34 Contact Prof. Matthias Bucher Technical University of Crete Dept. of Electronics & Comp. Eng. 73100 Chania, Crete, Greece phone: +30 28210 37210 fax: +30 28210 37542 [email protected] http://www.electronics.tuc.gr M. Bucher TUC -- MOS-AK Meeting, September 16, 2005 35