Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Corso di finanza e mercati finanziari internazionali I rischi finanziari Prof. Vittorio de Pedys, ESCP Europe, Unito Il rischio (1/2) σi => Rischio Rappresenta la possibilità di realizzare un rendimento diverso da quello atteso. Misura del grado di dispersione della distribuzione di una variabile casuale (il rendimento in questo caso) dal suo valore atteso. Il rischio (2/2) •VOLATILITA’ DEI RENDIMENTI = variabilità nel tempo •Si calcola come SCARTO QUADRATICO MEDIO r Ri Rmi = rendimenti singolo periodo Rm = rendimento medio atteso Rm N 2 Rischio specifico e rischio sistematico La figura dimostra che con la diversificazione si può ridurre (fino ad annullarlo) il rischio specifico, ma non quello sistematico Rischio di Mercato Vs. rischio specifico Rischio totale Rischio specifico (unico, residuo, diversificabile) Rischio sistematico (rischio di mercato) Riguarda una particolare azienda e può essere ridotto dalla diversificazione – un competitor brevetta una nuova tecnologia – I sindacati vanno in sciopero in uno stabilimento produttivo – Un forte competitor entra nel settore Riguarda tutte le aziende e non può essere ridotto dalla diversificazione – L’inflazione cresce inaspettatamente – Instabilità politica, guerre… – Federal Reserve alza I tassi di interesse – Il ciclo economico o industriale cambia Il rischio specifico deve essere riflesso nei flussi di cassa previsionali, non nel rasso di sconto Il rischio di mercato deve essere riflesso nel flussi di cassa e nel costo del capitale. Non può essere diversificato e gli investitori vogliono essere compensati per supportarlo Rischio e rendimento • Diversificando il portafoglio su diversi businesses, gli investitori possono eliminare il rischio specifico associato a ciascun singolo investimento. Il riscio di Mercato non può essere eliminato. Variability Variance Specific Risk Market Risk Number of Securities USING STANDARD DEVIATION OF HISTORIC RETURNS TO MEASURE RISK EXAMPLE Paolo is evaluating the possibility to invest in stocks from company X. He made a list of the return of such security from the last five years. What is the risk associated with this security? • Year Holding Period Return • • • • • 1 2 3 4 5 10% 30% -20% 0% 20% RA = 8% Variance • s2 = [(10-8)2+(30-8)2+(-20-8)2+(0-8)2+(208)2]/5 • = [4+484+784+64+144]/5 • = [1480]/5 • 17,2 = 296 = 7 Standard deviation Building portfolios : definitions E(Ri) Expected return of stock i Measures central tendency of a variable casuale (i.e the return ), express its mean and it is the sum of the multiplication of the possible values of the variable times its respective probabilities σi σij Risk (standard deviation ) of stock i Measures the level of dispersion of the distribution of a causal variable(i.e. the return) from its expected valure. It is the possibility of realizing a return different from the expected one Correlation between stocks i and j Measures the relationship between two casual variables The standard measures for risk are variance and standard deviation Concepts • To evaluate risk, one has to quantify it • However, there is no perfect way of measuring risk • In finance, the most commonly used method includes: Variance (σ2 or VAR) Standard deviation (σ) Descriptions • The average of squared deviations around the mean: 2 2 (R1 R ) (R 2 R ) ... (R T R )2 σ or VAR N -1 where R1 is the actual return and R Usually you is the expected return and N is use N-1 when the number of observations there are observations from a sample Square root of variance (and not actual Volatility is measured by population, in standard deviation of annual which case N returns is used) 2 • • σ VAR Deviations are squared and then square-rooted in order to prevent them from cross cancelling as a result of having both positive and negative numbers 9 Historical share performance shows that returns tend to distribute around an average • Plotting the return of large US companies of each year from 1926 to 2002, it can be observed that returns tend to be distributed around an average 10 • 2000 1988 1997 1990 1986 1999 1995 1981 1994 1979 1998 1991 1977 1993 1972 1996 1989 1969 1992 1971 1983 1985 1962 1987 1968 1982 1980 1953 1984 1965 1976 1975 1946 1978 1964 1967 1955 2001 1940 1970 1959 1963 1950 1973 1939 1960 1952 1961 1945 2002 1966 1934 1956 1949 1951 1938 1958 1974 1957 1932 1948 1944 1943 1936 1935 1954 1931 1937 1930 1941 1929 1947 1926 1942 1927 1928 1933 -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% A similar frequency distribution is also observed in small company shares La costruzione dei portafogli possibili Distribuzione normale Probabilità = 2.5% 95% Probabilità Ampiezza2σ Valore atteso Probabilità = 2.5% Se il campione è sufficientemente popolato, gli eventi ( ad es. i rendimenti) si distribuiranno normalmente The probability to be between the mean plus or minus 1 standard deviation • If we were to keep on generating observations for a long time period, the aberrations in the sample would disappear, and the actual historical distribution would start to look like the underlying theoretical (normal or Gaussian) distribution • Normal distribution looks like a bell-shaped curve The probability to be between the mean plus or minus 2 standard deviations 12 The probability to be between the mean plus or minus 3 standard deviations Building possible portfolios How you do it : • estimate expected return , risk and correlation (covariance ) for all considered stocks with : E(Ri) => expected return of stock i σi => Risk (standard deviation ) of stock i σiJ => correlation between stocks i and j xi => vector of weights • creation of possible portfolios combinind various stocks • Determination of of expected return and risk of each portfolio and in particular : E(RP) = Σi xi E(Ri) => expected return of portfolio σP = Σi ΣJ xi xJ σiJ => Risk of portfolio RISK RISKS ARISING FROM FINANCIAL INSTRUMENTS BEWARE BLACK SWANS ! to think that risk factors follow a a normal distribution UNDERVALUES extreme market movements real life distribuion have fatter tails