Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fig. 6-1 10 m 1m Human height Length of some nerve and muscle cells 0.1 m Chicken egg 1 cm Unaided eye Frog egg 100 µm Most plant and animal cells 10 µm Nucleus Most bacteria 1 µm 100 nm 10 nm Mitochondrion Smallest bacteria Viruses Ribosomes Proteins Lipids 1 nm Small molecules 0.1 nm Atoms Electron microscope 1 mm Light microscope Fig. 6-2 Fig. 6-3 TECHNIQUE RESULTS (a) Brightfield (unstained specimen) 50 µm (b) Brightfield (stained specimen) (c) Phase-contrast (d) Differential-interferencecontrast (Nomarski) (e) Fluorescence 50 µm (f) Confocal 50 µm Fig. 6-3ab TECHNIQUE RESULTS (a) Brightfield (unstained specimen) 50 µm (b) Brightfield (stained specimen) Fig. 6-3cd TECHNIQUE (c) Phase-contrast (d) Differential-interferencecontrast (Nomarski) RESULTS Fig. 6-3e TECHNIQUE RESULTS (e) Fluorescence 50 µm Fig. 6-3f TECHNIQUE RESULTS (f) Confocal 50 µm Fig. 6-4 TECHNIQUE (a) Scanning electron microscopy (SEM) RESULTS Cilia 1 µm (b) Transmission electron Longitudinal Cross section section of of cilium microscopy (TEM) 1 µm cilium Fig. 6-5 TECHNIQUE Homogenization Tissue cells Homogenate 1,000 g (1,000 times the force of gravity) Differential centrifugation 10 min Supernatant poured into next tube 20,000 g 20 min Pellet rich in nuclei and cellular debris 80,000 g 60 min 150,000 g 3 hr Pellet rich in mitochondria (and chloroplasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes Fig. 6-5a TECHNIQUE Homogenization Tissue cells Differential centrifugation Homogenate Fig. 6-5b TECHNIQUE (cont.) 1,000 g (1,000 times the force of gravity) 10 min Supernatant poured into next tube 20,000 g 20 min 80,000 g 60 min Pellet rich in nuclei and cellular debris 150,000 g 3 hr Pellet rich in mitochondria (and chloroplasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes Fig. 6-6 Fimbriae Nucleoid Ribosomes Plasma membrane Bacterial chromosome Cell wall Capsule 0.5 µm (a) A typical rod-shaped bacterium Flagella (b) A thin section through the bacterium Bacillus coagulans (TEM) Fig. 6-7 Outside of cell Inside of cell 0.1 µm (a) TEM of a plasma membrane Carbohydrate side chain Hydrophilic region Hydrophobic region Hydrophilic region Phospholipid Proteins (b) Structure of the plasma membrane Fig. 6-8 Surface area increases while total volume remains constant 5 1 1 Total surface area [Sum of the surface areas (height width) of all boxes sides number of boxes] Total volume [height width length number of boxes] Surface-to-volume (S-to-V) ratio [surface area ÷ volume] 6 150 750 1 125 125 6 1.2 6 Fig. 6-9a Nuclear envelope ENDOPLASMIC RETICULUM (ER) Flagellum Rough ER NUCLEUS Nucleolus Smooth ER Chromatin Centrosome Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Golgi apparatus Peroxisome Mitochondrion Lysosome Fig. 6-9b NUCLEUS Nuclear envelope Nucleolus Chromatin Rough endoplasmic reticulum Smooth endoplasmic reticulum Ribosomes Central vacuole Golgi apparatus Microfilaments Intermediate filaments Microtubules Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell CYTOSKELETON Fig. 6-10 Nucleus 1 µm Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Surface of nuclear envelope Rough ER Ribosome 1 µm 0.25 µm Close-up of nuclear envelope Pore complexes (TEM) Nuclear lamina (TEM) Fig. 6-11 Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit 0.5 µm TEM showing ER and ribosomes Small subunit Diagram of a ribosome Fig. 6-12 Smooth ER Rough ER ER lumen Cisternae Ribosomes Transport vesicle Smooth ER Nuclear envelope Transitional ER Rough ER 200 nm Fig. 6-13 cis face (“receiving” side of Golgi apparatus) 0.1 µm Cisternae trans face (“shipping” side of Golgi apparatus) TEM of Golgi apparatus Fig. 6-14 Nucleus 1 µm Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Peroxisome fragment Lysosome Lysosome Digestive enzymes Plasma membrane Lysosome Peroxisome Digestion Food vacuole Vesicle (a) Phagocytosis (b) Autophagy Mitochondrion Digestion Fig. 6-14a Nucleus 1 µm Lysosome Lysosome Digestive enzymes Plasma membrane Digestion Food vacuole (a) Phagocytosis Fig. 6-14b Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Peroxisome fragment Lysosome Peroxisome Vesicle (b) Autophagy Mitochondrion Digestion Fig. 6-15 Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast 5 µm Fig. 6-16-1 Nucleus Rough ER Smooth ER Plasma membrane Fig. 6-16-2 Nucleus Rough ER Smooth ER cis Golgi trans Golgi Plasma membrane Fig. 6-16-3 Nucleus Rough ER Smooth ER cis Golgi trans Golgi Plasma membrane Fig. 6-17 Intermembrane space Outer membrane Free ribosomes in the mitochondrial matrix Inner membrane Cristae Matrix 0.1 µm Fig. 6-18 Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm Fig. 6-19 Chloroplast Peroxisome Mitochondrion 1 µm Fig. 6-20 Microtubule 0.25 µm Microfilaments Fig. 6-21 ATP Vesicle Receptor for motor protein Motor protein Microtubule (ATP powered) of cytoskeleton (a) Microtubule (b) Vesicles 0.25 µm Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers Keratin proteins Actin subunit Fibrous subunit (keratins coiled together) 25 nm 7 nm Tubulin dimer 8–12 nm Table 6-1a 10 µm Column of tubulin dimers 25 nm Tubulin dimer Table 6-1b 10 µm Actin subunit 7 nm Table 6-1c 5 µm Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm Fig. 6-22 Centrosome Microtubule Centrioles 0.25 µm Longitudinal section Microtubules Cross section of one centriole of the other centriole Fig. 6-23 Direction of swimming (a) Motion of flagella 5 µm Direction of organism’s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm Fig. 6-24 Outer microtubule doublet 0.1 µm Dynein proteins Central microtubule Radial spoke Protein crosslinking outer doublets Microtubules Plasma membrane (b) Cross section of cilium Basal body 0.5 µm (a) Longitudinal section of cilium 0.1 µm Triplet (c) Cross section of basal body Plasma membrane Fig. 6-25 Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion Fig. 6-25a Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement Fig. 6-25b ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion Fig. 6-26 Microvillus Plasma membrane Microfilaments (actin filaments) Intermediate filaments 0.25 µm Fig. 6-27 Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments (c) Cytoplasmic streaming in plant cells Cell wall Fig, 6-27a Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Fig. 6-27bc Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments (c) Cytoplasmic streaming in plant cells Cell wall Fig. 6-28 Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata Fig. 6-29 RESULTS 10 µm Distribution of cellulose synthase over time Distribution of microtubules over time Fig. 6-30 Collagen Proteoglycan complex EXTRACELLULAR FLUID Polysaccharide molecule Carbohydrates Fibronectin Core protein Integrins Proteoglycan molecule Plasma membrane Proteoglycan complex Microfilaments CYTOPLASM Fig. 6-30a Collagen Proteoglycan complex EXTRACELLULAR FLUID Fibronectin Integrins Plasma membrane Microfilaments CYTOPLASM Fig. 6-30b Polysaccharide molecule Carbohydrates Core protein Proteoglycan molecule Proteoglycan complex Fig. 6-31 Cell walls Interior of cell Interior of cell 0.5 µm Plasmodesmata Plasma membranes Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells • At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid • Desmosomes (anchoring junctions) fasten cells together into strong sheets • Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Animation: Tight Junctions Animation: Desmosomes Animation: Gap Junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig. 6-32 Tight junction Tight junctions prevent fluid from moving across a layer of cells 0.5 µm Tight junction Intermediate filaments Desmosome Gap junctions Space between cells Plasma membranes of adjacent cells Desmosome 1 µm Extracellular matrix Gap junction 0.1 µm Fig. 6-32a Tight junctions prevent fluid from moving across a layer of cells Tight junction Intermediate filaments Desmosome Gap junctions Space between cells Plasma membranes of adjacent cells Extracellular matrix Fig. 6-32b Tight junction 0.5 µm Fig. 6-32c Desmosome 1 µm Fig. 6-32d Gap junction 0.1 µm Fig. 6-33 Fig. 6-UN1 Cell Component Concept 6.3 The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes Structure Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Nucleus Function Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit of materials. (ER) Two subunits made of riboProtein synthesis somal RNA and proteins; can be free in cytosol or bound to ER Ribosome Concept 6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell Concept 6.5 Mitochondria and chloroplasts change energy from one form to another Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohydrates, Ca2+ storage, detoxification of drugs and poisons Golgi apparatus Stacks of flattened membranous sacs; has polarity (cis and trans faces) Modification of proteins, carbohydrates on proteins, and phospholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Lysosome Membranous sac of hydrolytic enzymes (in animal cells) Vacuole Large membrane-bounded vesicle in plants Digestion, storage, waste disposal, water balance, cell growth, and protection Mitochondrion Bounded by double membrane; inner membrane has infoldings (cristae) Cellular respiration Endoplasmic reticulum (Nuclear envelope) Chloroplast Peroxisome Rough ER: Aids in synthesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Breakdown of ingested substances, cell macromolecules, and damaged organelles for recycling Typically two membranes Photosynthesis around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Specialized metabolic compartment bounded by a single membrane Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome Fig. 6-UN1a Structure Cell Component Concept 6.3 The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes Nucleus Function Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit os materials. Two subunits made of ribosomal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis (ER) Ribosome Fig. 6-UN1b Cell Component Concept 6.4 Endoplasmic reticulum The endomembrane system (Nuclear regulates protein traffic and envelope) performs metabolic functions in the cell Golgi apparatus Lysosome Vacuole Structure Function Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohydrates, Ca2+ storage, detoxification of drugs and poisons Stacks of flattened membranous sacs; has polarity (cis and trans faces) Rough ER: Aids in sythesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Modification of proteins, carbohydrates on proteins, and phospholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Breakdown of ingested subMembranous sac of hydrolytic stances cell macromolecules, enzymes (in animal cells) and damaged organelles for recycling Large membrane-bounded vesicle in plants Digestion, storage, waste disposal, water balance, cell growth, and protection Fig. 6-UN1c Cell Component Concept 6.5 Mitochondrion Mitochondria and chloroplasts change energy from one form to another Structure Bounded by double membrane; inner membrane has infoldings (cristae) Function Cellular respiration Chloroplast Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Photosynthesis Peroxisome Specialized metabolic compartment bounded by a single membrane Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome Fig. 6-UN2 Fig. 6-UN3 You should now be able to: 1. Distinguish between the following pairs of terms: magnification and resolution; prokaryotic and eukaryotic cell; free and bound ribosomes; smooth and rough ER 2. Describe the structure and function of the components of the endomembrane system 3. Briefly explain the role of mitochondria, chloroplasts, and peroxisomes 4. Describe the functions of the cytoskeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 5. Compare the structure and functions of microtubules, microfilaments, and intermediate filaments 6. Explain how the ultrastructure of cilia and flagella relate to their functions 7. Describe the structure of a plant cell wall 8. Describe the structure and roles of the extracellular matrix in animal cells 9. Describe four different intercellular junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings