Download File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name _______________________________________ Date __________________ Class __________________
Practice C
Circles in the Coordinate Plane
1. Points A, B, and C lie on the circumference of a circle. AB is
twice the radius of the circle. Find mACB.
________________________________________________________________________________________
2. Points A, B, and C lie on the circumference of a circle. The center of
the circle lies in the exterior of ABC. Classify ABC by its angles.
________________________________________________________________________________________
Give answers in simplest radical form if necessary.
3. The points X(3, 4) and Y(9, 1) lie on the circumference of a circle. There
is exactly 60° of arc between X and Y. Find the radius of the circle.
________________________________________________________________________________________
4. Find the coordinates of all possible centers of the circle in Exercise 3.
________________________________________________________________________________________
5. Find the intersection point(s) of the circle (x  2)2  y2  25
and the line 2x  y  3.
________________________________________________________________________________________
6. Find the intersection point(s) of the circle (x  2)2  y2  25
and the line y 
4
3
x
17
3
.
________________________________________________________________________________________
7. Describe the relationship between the circle and the line in Exercise 6.
________________________________________________________________________________________
________________________________________________________________________________________
8. Find the intersection point(s) of the circle (x  2)2  y2  25
and the circle x2  y2  9.
________________________________________________________________________________________
9. Describe the relationship between the two circles in Exercise 8.
________________________________________________________________________________________
________________________________________________________________________________________
Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.
Holt McDougal Geometry
Related documents