Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
For Instructors Solutions to End-of-Chapter Exercises Chapter 2 Review of Probability 2.1. (a) Probability distribution function for Y Outcome (number of heads) Probability Y0 0.25 Y1 0.50 Y2 0.25 (b) Cumulative probability distribution function for Y Outcome (number of heads) Probability Y0 0 0Y1 0.25 1Y2 0.75 Y2 1.0 d (c) Y = E (Y ) (0 0.25) (1 0.50) (2 0.25) 1.00 . F Fq, . Using Key Concept 2.3: var(Y ) E(Y 2 ) [ E(Y )]2 , and (ui | X i ) so that var(Y ) E(Y 2 ) [ E(Y )]2 1.50 (1.00)2 0.50. 2.2. We know from Table 2.2 that Pr (Y 0) 022, Pr (Y 1) 078, Pr ( X 0) 030, Pr ( X 1) 070. So (a) Y E (Y ) 0 Pr (Y 0) 1 Pr (Y 1) 0 022 1 078 078, X E ( X ) 0 Pr ( X 0) 1 Pr ( X 1) 0 030 1 070 070 (b) X2 E[( X X )2 ] (0 0.70) 2 Pr ( X 0) (1 0.70) 2 Pr ( X 1) (070) 2 030 030 2 070 021, Y2 E[(Y Y )2 ] (0 0.78) 2 Pr (Y 0) (1 0.78) 2 Pr (Y 1) (078) 2 022 0222 078 01716 Solutions to End-of-Chapter Empirical Exercises (c) XY cov (X , Y ) E[( X X )(Y Y )] (0 0.70)(0 0.78) Pr( X 0, Y 0) (0 070)(1 078) Pr ( X 0 Y 1) (1 070)(0 078) Pr ( X 1 Y 0) (1 070)(1 078) Pr ( X 1 Y 1) (070) (078) 015 (070) 022 015 030 (078) 007 030 022 063 0084, corr (X , Y ) 2.3. XY 0084 04425 XY 021 01716 For the two new random variables W 3 6 X and V 20 7Y , we have: (a) E (V ) E (20 7Y ) 20 7 E (Y ) 20 7 078 1454, E (W ) E (3 6 X ) 3 6 E ( X ) 3 6 070 72 (b) W2 var (3 6 X ) 62 X2 36 021 756, V2 var (20 7Y ) (7)2 Y2 49 01716 84084 (c) WV cov(3 6 X , 20 7Y ) 6 (7)cov(X , Y ) 42 0084 3528 corr (W , V ) 2.4. WV 3528 04425 W V 756 84084 (a) E( X 3 ) 03 (1 p) 13 p p (b) E( X k ) 0k (1 p) 1k p p (c) E ( X ) 0.3 , and var(X) = E(X2)−[E(X)]2 = 0.3 −0.09 = 0.21. Thus = 0.21 = 0.46. var ( X ) E( X 2 ) [ E( X )]2 0.3 0.09 0.21 0.21 0.46. To compute the skewness, use the formula from exercise 2.21: E ( X )3 E ( X 3 ) 3[ E ( X 2 )][ E ( X )] 2[ E ( X )]3 0.3 3 0.32 2 0.33 0.084 Alternatively, E( X )3 [(1 0.3)3 0.3] [(0 0.3)3 0.7] 0.084 Thus, skewness E( X )3/ 3 0.084/0.463 0.87. To compute the kurtosis, use the formula from exercise 2.21: E ( X )4 E ( X 4 ) 4[ E ( X )][ E ( X 3 )] 6[ E ( X )]2 [ E ( X 2 )] 3[ E ( X )]4 0.3 4 0.32 6 0.33 3 0.34 0.0777 Alternatively, E( X )4 [(1 0.3)4 0.3] [(0 0.3)4 0.7] 0.0777 Thus, kurtosis is E( X )4/ 4 0.0777/0.464 1.76 ©2011 Pearson Education, Inc. Publishing as Addison Wesley 3 Solutions to End-of-Chapter Empirical Exercises 2.5. Let X denote temperature in F and Y denote temperature in C. Recall that Y 0 when X 32 and Y 100 when X 212; this implies Y (100/180) ( X 32) or Y 17.78 (5/9) X. Using Key Concept 2.3, X 70oF implies that Y 17.78 (5/9) 70 21.11C, and X 7oF implies Y (5/9) 7 3.89C. 2.6. 4 The table shows that Pr ( X 0, Y 0) 0037, Pr ( X 0, Y 1) 0622, Pr ( X 1, Y 0) 0009, Pr ( X 1, Y 1) 0332, Pr ( X 0) 0659, Pr ( X 1) 0341, Pr (Y 0) 0046, Pr (Y 1) 0954. (a) E (Y ) Y 0 Pr(Y 0) 1 Pr (Y 1) 0 0046 1 0954 0954 # (unemployed) (b) Unemployment Rate # (labor force) Pr (Y 0) 1 Pr(Y 1) 1 E (Y ) 1 0954 0.046 (c) Calculate the conditional probabilities first: Pr (Y 0| X 0) Pr ( X 0, Y 0) 0037 0056, Pr ( X 0) 0659 Pr (Y 1| X 0) Pr ( X 0, Y 1) 0622 0944, Pr ( X 0) 0659 Pr (Y 0| X 1) Pr ( X 1, Y 0) 0009 0026, Pr ( X 1) 0341 Pr (Y 1| X 1) Pr ( X 1, Y 1) 0332 0974 Pr ( X 1) 0341 The conditional expectations are E (Y |X 1) 0 Pr (Y 0| X 1) 1 Pr (Y 1| X 1) 0 0026 1 0974 0974, E (Y |X 0) 0 Pr (Y 0| X 0) 1 Pr (Y 1|X 0) 0 0056 1 0944 0944 (d) Use the solution to part (b), Unemployment rate for college graduates 1 E(Y|X 1) 1 0.974 0.026 Unemployment rate for non-college graduates 1 E(Y|X 0) 1 0.944 0.056 (e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is Pr ( X 1|Y 0) Pr ( X 1, Y 0) 0009 0196 Pr (Y 0) 0046 The probability that this worker is a non-college graduate is Pr ( X 0|Y 0) 1 Pr ( X 1|Y 0) 1 0196 0804 ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises 5 (f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of x and y, Pr ( X x |Y y) Pr ( X x) For example, from part (e) Pr ( X 0|Y 0) 0.804, while from the table Pr(X 0) 0.659. 2.7. Using obvious notation, C M F; thus C M F and C2 M2 F2 2cov(M, F ). This implies (a) C 40 45 $85,000 per year. cov(M , F ) , so that cov( M , F ) M F corr ( M , F ). Thus cov( M, F ) M F 12 18 0.80 172.80, where the units are squared thousands of dollars per year. (b) corr ( M, F ) (c) C2 M2 F2 2cov(M, F ), so that C2 122 182 2 172.80 813.60, and C 813.60 28.524 thousand dollars per year. (d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say e 0.80 Euros per dollar); each 1 dollar is therefore with e Euros. The mean is therefore e C (in units of thousands of Euros per year), and the standard deviation is e C (in units of thousands of Euros per year). The correlation is unit-free, and is unchanged. 2.8. Y E (Y ) 1, Y2 var (Y ) 4. With Z 12 (Y 1), 1 1 1 Z E (Y 1) ( Y 1) (1 1) 0, 2 2 2 1 2 1 4 1 4 Z2 var (Y 1) Y2 4 1 2.9. Value of Y 1 5 8 Probability distribution of Y Value of X 14 0.02 0.17 0.02 0.21 22 0.05 0.15 0.03 0.23 30 0.10 0.05 0.15 0.30 40 0.03 0.02 0.10 0.15 65 0.01 0.01 0.09 0.11 Probability Distribution of X 0.21 0.40 0.39 1.00 (a) The probability distribution is given in the table above. E (Y ) 14 0.21 22 0.23 30 0.30 40 0.15 65 0.11 30.15 E (Y 2 ) 142 0.21 222 0.23 302 0.30 402 0.15 652 0.11 1127.23 var(Y ) E (Y 2 ) [ E (Y )]2 218.21 Y 14.77 ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises (b) The conditional probability of Y|X 8 is given in the table below 14 22 0.02/0.39 0.03/0.39 Value of Y 30 0.15/0.39 40 65 0.10/0.39 0.09/0.39 E (Y | X 8) 14 (0.02/0.39) 22 (0.03/0.39) 30 (0.15/0.39) 40 (0.10/0.39) 65 (0.09/0.39) 39.21 E (Y 2 | X 8) 142 (0.02/0.39) 222 (0.03/0.39) 302 (0.15/0.39) 402 (0.10/0.39) 652 (0.09/0.39) 1778.7 var(Y ) 1778.7 39.212 241.65 Y X 8 15.54 (c) E ( XY ) (114 0.02) (1 22 : 0.05) (8 65 0.09) 171.7 cov( X , Y ) E( XY ) E( X ) E(Y ) 171.7 5.33 30.15 11.0 corr( X , Y ) cov( X , Y )/( X Y ) 11.0 / (2.60 14.77) 0.286 2.10. Using the fact that if Y N Y , Y2 then Y Y Y ~ N (0,1) and Appendix Table 1, we have Y 1 3 1 (a) Pr (Y 3) Pr (1) 08413 2 2 Y 3 03 (b) Pr(Y 0) 1 Pr(Y 0) 1 Pr 3 3 1 (1) (1) 08413 40 50 Y 50 52 50 (c) Pr (40 Y 52) Pr 5 5 5 (04) (2) (04) [1 (2)] 06554 1 09772 06326 65 Y 5 85 (d) Pr (6 Y 8) Pr 2 2 2 (21213) (07071) 09831 07602 02229 2.11. (a) 0.90 (b) 0.05 (c) 0.05 (d) When Y ~ 102 , then Y /10 ~ F10, . 2 (e) Y Z , where Z ~ N (0,1), thus Pr (Y 1) Pr (1 Z 1) 0.32. ©2011 Pearson Education, Inc. Publishing as Addison Wesley 6 Solutions to End-of-Chapter Empirical Exercises 2.12. (a) (b) (c) (d) (e) (f) 0.05 0.950 0.953 The tdf distribution and N(0, 1) are approximately the same when df is large. 0.10 0.01 2.13. (a) E(Y 2 ) Var (Y ) Y2 1 0 1; E(W 2 ) Var (W ) W2 100 0 100. (b) Y and W are symmetric around 0, thus skewness is equal to 0; because their mean is zero, this means that the third moment is zero. (c) The kurtosis of the normal is 3, so 3 E(Y Y )4 / Y4 ; solving yields E(Y 4 ) 3; a similar calculation yields the results for W. (d) First, condition on X 0, so that S W : E(S | X 0) 0; E(S 2 | X 0) 100, E(S 3|X 0) 0, E(S 4 | X 0) 3 1002. Similarly, E(S | X 1) 0; E(S 2 | X 1) 1, E(S 3 | X 1) 0, E(S 4 | X 1) 3. From the law of iterated expectations E ( S ) E ( S | X 0) Pr (X 0) E ( S | X 1) Pr( X 1) 0 E ( S 2 ) E ( S 2 | X 0) Pr (X 0) E ( S 2 | X 1) Pr( X 1) 100 0.01 1 0.99 1.99 E ( S 3 ) E ( S 3 | X 0) Pr (X 0) E ( S 3 | X 1) Pr( X 1) 0 E ( S 4 ) E ( S 4 | X 0) Pr (X 0) E ( S 4 | X 1) Pr( X 1) 3 1002 0.01 3 1 0.99 302.97 (e) S E ( S ) 0, thus E(S S )3 E(S 3 ) 0 from part (d). Thus skewness 0. Similarly, S2 E(S S )2 E(S 2 ) 1.99, and E(S S )4 E(S 4 ) 302.97. Thus, kurtosis 302.97 / (1.992 ) 76.5 2.14. The central limit theorem suggests that when the sample size (n) is large, the distribution of the sample average (Y ) is approximately N Y , Y2 with Y2 (a) n 100, Y2 Y2 n Y2 n . Given Y 100, Y2 430, 43 100 043, and Y 100 101 100 Pr (Y 101) Pr (1525) 09364 043 043 (b) n 165, Y2 Y2 n 43 165 02606, and Y 100 98 100 Pr (Y 98) 1 Pr (Y 98) 1 Pr 02606 02606 1 (39178) (39178) 1000 (rounded to four decimal places) ©2011 Pearson Education, Inc. Publishing as Addison Wesley 7 Solutions to End-of-Chapter Empirical Exercises (c) n 64, Y2 Y2 64 8 43 06719, and 64 101 100 Y 100 103 100 Pr (101 Y 103) Pr 06719 06719 06719 (36599) (12200) 09999 08888 01111 2.15. 9.6 10 Y 10 10.4 10 (a) Pr (9.6 Y 10.4) Pr 4/n 4/n 4/n 10.4 10 9.6 10 Pr Z 4/n 4/n where Z ~ N(0, 1). Thus, 10.4 10 9.6 10 (i) n 20; Pr Z Pr (0.89 Z 0.89) 0.63 4/n 4/n 10.4 10 9.6 10 (ii) n 100; Pr Z Pr(2.00 Z 2.00) 0.954 4/n 4/n 10.4 10 9.6 10 Z Pr(6.32 Z 6.32) 1.000 4/n 4/n (iii) n 1000; Pr c Y 10 c (b) Pr (10 c Y 10 c) Pr 4/n 4/n 4/n c c Pr Z . 4/n 4/n As n get large c gets large, and the probability converges to 1. 4/n (c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6. 2.16. There are several ways to do this. Here is one way. Generate n draws of Y, Y1, Y2, … Yn. Let Xi 1 if Yi 3.6, otherwise set Xi 0. Notice that Xi is a Bernoulli random variables with X Pr(X 1) Pr(Y 3.6). Compute X . Because X converges in probability to X Pr(X 1) Pr(Y 3.6), X will be an accurate approximation if n is large. 2.17. Y = 0.4 and Y2 0.4 0.6 0.24 Y 0.4 0.43 0.4 Y 0.4 (a) (i) P( Y 0.43) Pr 0.6124 0.27 Pr 0.24/n 0.24/n 0.24/n ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises Y 0.4 0.37 0.4 Y 0.4 (ii) P( Y 0.37) Pr 1.22 0.11 Pr 0.24/n 0.24/n 0.24/n (b) We know Pr(1.96 Z 1.96) 0.95, thus we want n to satisfy 0.41 and 2.18. 0.41 0.40 1.96 24 / n 0.39 0.40 1.96. Solving these inequalities yields n 9220. 24 / n Pr (Y $0) 095, Pr (Y $20000) 005. (a) The mean of Y is Y 0 Pr (Y $0) 20,000 Pr (Y $20000) $1000. The variance of Y is Y2 E (Y Y ) 2 (0 1000) 2 Pr(Y 0) (20000 1000) 2 Pr (Y 20000) (1000)2 095 190002 005 19 107, so the standard deviation of Y is Y (19 107 ) 2 $4359 1 (b) (i) E(Y ) Y $1000, Y2 Y2 n (ii) Using the central limit theorem, 1.9 107 19 105. 100 Pr (Y 2000) 1 Pr (Y 2000) Y 1000 2 000 1 000 1 Pr 5 19 105 19 10 1 (22942) 1 09891 00109 2.19. l (a) Pr (Y y j ) Pr ( X xi , Y y j ) i 1 l Pr (Y y j | X xi )Pr ( X xi ) i 1 k k l j 1 j 1 i 1 (b) E (Y ) y j Pr (Y yj ) yj Pr (Y y j |X xi ) Pr ( X xi ) l k i 1 j 1 y j Pr (Y yj |X xi ) Pr ( X xi ) l E (Y | X xi )Pr ( X xi ) i 1 (c) When X and Y are independent, Pr (X xi , Y yj ) Pr (X xi )Pr (Y yj ) so ©2011 Pearson Education, Inc. Publishing as Addison Wesley 9 Solutions to End-of-Chapter Empirical Exercises XY E[( X X )(Y Y )] l k ( xi X )( y j Y ) Pr ( X xi , Y y j ) i 1 j 1 l k ( xi X )( y j Y ) Pr ( X xi ) Pr (Y y j ) i 1 j 1 l k ( xi X ) Pr ( X xi ) ( yj Y ) Pr (Y yj i 1 j 1 E ( X X ) E (Y Y ) 0 0 0, corr(X , Y ) 2.20. l XY 0 0 XY XY m (a) Pr (Y yi ) Pr (Y yi | X xj , Z zh ) Pr (X xj , Z zh ) j 1 h 1 k (b) E (Y ) yi Pr (Y yi ) Pr (Y yi ) i 1 k l m yi Pr (Y yi | X xj , Z zh ) Pr (X xj , Z zh ) i 1 j 1 h 1 k yi Pr (Y yi | X xj , Z zh ) Pr (X xj , Z zh ) j 1 h 1 i 1 l m l m E (Y | X xj , Z zh ) Pr (X xj , Z zh ) j 1 h 1 where the first line in the definition of the mean, the second uses (a), the third is a rearrangement, and the final line uses the definition of the conditional expectation. 2.21. (a) E ( X )3 E[( X ) 2 ( X )] E[ X 3 2 X 2 X 2 X 2 2 X 2 3 ] E ( X 3 ) 3E ( X 2 ) 3 E ( X ) 2 3 E ( X 3 ) 3 E ( X 2 ) E ( X ) 3E ( X )[ E ( X )]2 [ E ( X )]3 E ( X 3 ) 3E ( X 2 ) E ( X ) 2 E ( X ) 3 (b) E ( X ) 4 E[( X 3 3 X 2 3 X 2 3 )( X )] E[ X 4 3 X 3 3 X 2 2 X 3 X 3 3 X 2 2 3 X 3 4 ] E ( X 4 ) 4E ( X 3 ) E ( X ) 6E( X 2 ) E( X )2 4 E( X ) E( X )3 E( X ) 4 E ( X 4 ) 4[ E ( X )][ E ( X 3 )] 6[ E ( X )]2 [ E ( X 2 )] 3[ E ( X )]4 ©2011 Pearson Education, Inc. Publishing as Addison Wesley 10 Solutions to End-of-Chapter Empirical Exercises 2.22. 11 The mean and variance of R are given by w 0.08 (1 w) 0.05 2 w2 0.072 (1 w)2 0.042 2 w (1 w) [0.07 0.04 0.25] where 0.07 0.04 0.25 Cov ( Rs , Rb ) follows from the definition of the correlation between Rs and Rb. (a) 0.065; 0.044 (b) 0.0725; 0.056 (c) w 1 maximizes ; 0.07 for this value of w. (d) The derivative of 2 with respect to w is d 2 2w 0.07 2 2(1 w) 0.042 (2 4 w) [0.07 0.04 0.25] dw 0.0102w 0.0018 Solving for w yields w 18 / 102 0.18. (Notice that the second derivative is positive, so that this is the global minimum.) With w 0.18, R 0.038. 2.23. X and Z are two independently distributed standard normal random variables, so X Z 0, X2 Z2 1, XZ 0. (a) Because of the independence between X and Z , Pr (Z z| X x) Pr (Z z ), and E(Z |X ) E(Z ) 0. Thus E(Y| X ) E( X 2 Z| X ) E( X 2| X ) E(Z |X ) X 2 0 X 2 (b) E( X 2 ) X2 X2 1, and Y E( X 2 Z ) E( X 2 ) Z 1 0 1 (c) E( XY ) E( X 3 ZX ) E( X 3 ) E(ZX ). Using the fact that the odd moments of a standard normal random variable are all zero, we have E( X 3 ) 0. Using the independence between 3 X and Z , we have E ( ZX ) Z X 0. Thus E( XY ) E( X ) E(ZX ) 0. (d) cov (XY ) E[( X X )(Y Y )] E[( X 0)(Y 1)] E ( XY X ) E ( XY ) E ( X ) 0 0 0 corr (X , Y ) 2.24. XY 0 0 XY XY (a) E(Yi 2 ) 2 2 2 and the result follows directly. (b) (Yi/) is distributed i.i.d. N(0,1), W i 1 (Yi / )2 , and the result follows from the definition n of a n2 random variable. n (c) E (W ) E i 1 Yi 2 2 n E i 1 Yi 2 2 n. (d) Write ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises V Y1 in2 Yi2 n 1 12 Y1 / in2 (Y / ) 2 n 1 which follows from dividing the numerator and denominator by . Y1/ ~ N(0,1), n n i 2 (Yi / )2 ~ n21 , and Y1/ and i 2 (Yi / )2 are independent. The result then follows from the definition of the t distribution. n 2.25. (a) axi (ax1 ax2 ax3 i 1 n (b) (x y ) (x i 1 i i 1 axn ) a( x1 x2 x3 y1 x2 y2 ( x1 x2 n n i 1 i 1 n xn ) a xi i 1 xn yn ) xn ) ( y1 y2 yn ) xi yi n (c) a (a a a a) na i 1 (d) n (a bx i 1 n i cyi ) 2 (a 2 b 2 xi2 c 2 yi2 2abxi 2acyi 2bcxi yi ) i 1 n n n n n i 1 i 1 i 1 i 1 i 1 na 2 b 2 xi2 c 2 yi2 2ab xi 2ac yi 2bc xi yi 2.26. (a) corr(Yi,Yj) cov(Yi , Yj )/ Yi Yj cov(Yi , Yj )/ Y Y cov(Yi , Yj )/ Y2 , where the first equality uses the definition of correlation, the second uses the fact that Yi and Yj have the same variance (and standard deviation), the third equality uses the definition of standard deviation, and the fourth uses the correlation given in the problem. Solving for cov(Yi, Yj) from the last equality gives the desired result. (b) (c) Y 1 1 1 1 Y Y1 Y2 , so that E( Y ) E (Y )1 E (Y2 ) Y 2 2 2 2 2 Y2 1 1 2 var(Y ) var(Y1 ) var(Y2 ) cov(Y1 , Y2 ) Y 4 4 4 2 2 1 n 1 n 1 n Yi , so that E (Y ) E (Yi ) Y Y n i 1 n i 1 n i 1 ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises 1 n var(Y ) var Yi n i 1 1 n 2 2 var(Yi ) 2 n i 1 n 1 n2 n Y2 i 1 2 n2 n 1 n 1 n cov(Y , Y ) i 1 j i 1 i j n i 1 j i 1 2 Y n(n 1) Y2 n n2 2 1 Y 1 Y2 n n where the fourth line uses n 1 2 Y n a a(1 2 3 n 1) i 1 j i 1 (d) When n is large 2.27 2 Y n 0 and an(n 1) for any variable a. 2 1 0 , and the result follows from (c). n (a) E(W) E[E(W|Z)] E[E(X X )|Z] E[E(X|Z) E(X|Z)] 0. (b) E(WZ) E[E(WZ|Z)] E[ZE(W)|Z] E[ Z 0] 0 (c) Using the hint: V W h(Z), so that E(V2) E(W2) E[h(Z)2] 2 E[W h(Z)]. Using an argument like that in (b), E[W h(Z)] 0. Thus, E(V2) E(W2) E[h(Z)2], and the result follows by recognizing that E[h(Z)2] 0 because h(z)2 0 for any value of z. For Instructors Solutions to End-of-Chapter Empirical Exercises ©2011 Pearson Education, Inc. Publishing as Addison Wesley 13 Solutions to End-of-Chapter Empirical Exercises ©2011 Pearson Education, Inc. Publishing as Addison Wesley 14 Chapter 3 Review of Statistics 3.1 (a) Average Hourly Earnings, Nominal $’s Mean 11.63 18.98 Difference 7.35 AHE1992 AHE2008 AHE2008 AHE1992 SE(Mean) 0.064 0.115 SE(Difference) 0.132 95% Confidence Interval 11.50 11.75 18.75 19.20 95% Confidence Interval 7.09 7.61 (b) Average Hourly Earnings, Real $2008 Mean 17.83 18.98 Difference 1.14 AHE1992 AHE2008 AHE2008 − AHE1992 SE(Mean) 0.099 0.115 SE(Difference) 0.152 95% Confidence Interval 17.63 – 18.03 18.75 – 19.20 95% Confidence Interval 0.85 – 1.44 (c) The results from part (b) adjust for changes in purchasing power. These results should be used. (d) Average Hourly Earnings in 2008 Mean SE(Mean) High School 15.33 0.122 College 22.91 0.180 Difference SE(Difference) College-High School 7.58 0.217 (e) Average Hourly Earnings in 1992 (in $2008) High School College College-High School Mean 15.31 21.78 Difference 6.47 SE(Mean) 0.103 0.171 SE(Difference) 0.200 95% Confidence Interval 15.09 – 15.57 22.56 – 23.26 95% Confidence Interval 7.15 – 8.00 95% Confidence Interval 15.11 – 15.52 21.45 – 22.12 95% Confidence Interval 6.08 – 6.86 ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises 16 (f) Average Hourly Earnings in 2008 Mean 0.02 1.13 SE(Mean) 0.160 0.248 95% Confidence Interval –0.29 – 0.33 0.64 – 1.61 6.47 7.58 Difference 1.11 0.200 0.217 SE(Difference) 0.295 6.08 – 6.86 7.15 – 8.00 95% Confidence Interval 0.53 – 1.69 AHEHS,2008 AHEHS,1992 AHECol,2008 AHECol,1992 Col-HS Gap (1992) Col-HS Gap (2008) Gap2008 − Gap1992 Wages of high school graduates increased by an estimated 0.02 dollars per hour (with a 95% confidence interval of −0.29 to 0.33); Wages of college graduates increased by an estimated 1.13 dollars per hour (with a 95% confidence interval of 0.64 to 1.61). The College-High School increased by an estimated 1.11 dollars per hour. (g) Gender Gap in Earnings for High School Graduates Year Ym sm nm Yw sw nw Ym − Yw SE( Ym − Yw ) 95% CI 1992 16.55 7.46 2769 13.48 5.96 1874 3.07 0.20 2008 16.59 8.16 2537 13.15 6.27 1465 3.43 0.23 2.68 – 3.45 2.98 – 3.89 There is a large and statistically significant gender gap in earnings for high school graduates. In 2008 the estimated gap was $3.43 per hour; in 1992 the estimated gap was $3.07 per hour (in $2008). The increase in the gender gap is somewhat smaller for high school graduates than it was for college graduates. ©2011 Pearson Education, Inc. Publishing as Addison Wesley Solutions to End-of-Chapter Empirical Exercises ©2011 Pearson Education, Inc. Publishing as Addison Wesley 17