* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Name: Date: Geometry Honors Unit 3 Quiz 1 Review Sections 3.5
Technical drawing wikipedia , lookup
History of geometry wikipedia , lookup
Multilateration wikipedia , lookup
Trigonometric functions wikipedia , lookup
History of trigonometry wikipedia , lookup
Euler angles wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Name: __________________________________ Date: ____________________ Geometry Honors Unit 3 Quiz 1 Review Sections 3.5, 4.1-4.3, 4.6 1. Find the value of each variable. x = _________° y = _________° z = _________° 2. x = _________° 3. Use the diagram at the right to answer the questions. a. Which angle is an exterior angle? b. What are its remote interior angles? c. Find m1 and m2. m1 = _________° m2 = _________° WXYZ JKLM. List each of the following. 4. Four pairs of congruent sides. _________ _________ _________ _________ _________ _________ _________ _________ 5.Four pairs of congruent angles. _________ _________ _________ _________ _________ _________ _________ _________ ABCD FGHJ. Find the measures of the given angles or lengths of the given sides. A D F J B C G H 6. mB = 3y, mG = y + 50 y = _________° mB = _________° mG = _________° 7. CD = 2x + 3; HJ = 3x + 2 x = _________ CD = _________ HJ = _________ Would you use SSS or SAS to prove the triangles congruent? If so, write a congruence statement. If there is not enough information to prove the triangles congruent by SSS or SAS, write not enough information. Explain your answer. 8. 9. _________________________________ 10. _________________________________ _________________________________ 11. _________________________________ Name two triangles that are congruent by ASA. 12. _________________________________ For each pair of triangles, tell why the two triangles are congruent. Give the congruence statement. 13. 14. _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ Proof Practice Complete the following proofs. 15. Given: WVZ and VWX are right angles. WZ VX Prove: WVZ VWX Statements Reasons 16. ̅̅̅̅ ; ̅̅̅̅ ̅̅̅̅ ; ̅̅̅̅ ̅̅̅̅ Given: ̅̅̅̅ 𝐴𝐸 ∥ 𝐵𝐷 𝐸𝐵 ∥ 𝐷𝐶 𝐴𝐸 ≅ 𝐵𝐷 Prove: ∆𝐴𝐸𝐵 ≅ Δ𝐵𝐷𝐶 Statements Reasons 17. Given: B and D are right angles. AE bisects BD Prove: ABC EDC Statements Reasons 18. Given: BC DC, AC EC Prove: ABC EDC Statements 19. 20. 21. 22. 23. 24. NOTE: Review Proof Packets as well Reasons