Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mean, Median, Mode, and Midrange of Grouped Data Section 2.5 Grouped Data…… You must add one more column than you did using ungrouped data. You now need a midpoint column. The symbol for the midpoint is xm . Formulas……Mean Mean f xm x n Median There IS a formula to find the median using grouped data. n cf 2 median ( w) Lm f Mode…… Find the greatest frequency and read across the chart until you see the class that corresponds to it. Your answer will be the entire interval. Midrange….. Add the lowest number in the first row to the highest number in the last row. Divide that answer by 2. Example….. Find the mean, median, and mode of the set of grouped data. x 6-11 11-16 16-21 f 1 2 3 21-26 26-31 31-36 5 4 3 36-41 2 n=20 Here is the list you should have…… x f midpoint f x midpoint cf 6-11 11-16 16-21 1 2 3 8.5 13.5 18.5 8.5 27 55.5 1 3 6 21-26 26-31 31-36 5 4 3 23.5 28.5 33.5 117.5 114 100.5 11 15 18 36-41 2 38.5 77 20 20 500 Mean…… 500 x 25 20 Median….. n/2 = 20/2 = 10 x f midpoint f(midpoint) cf 6-11 1 8.5 8.5 1 11-16 2 13.5 27 3 16-21 3 18.5 55.5 6 21-26 5 23.5 117.5 11 26-31 4 28.5 114 15 31-36 3 33.5 100.5 18 36-41 2 38.5 77 20 20 500 Plug values into formula…. 10 6 median (5) 21 25 5 Mode and Midrange…… The mode is 21-26. Midrange = (41 6) 47 23.5 2 2 x f midpoint f(midpoint) cf 6-11 1 8.5 8.5 1 11-16 2 13.5 27 3 16-21 3 18.5 55.5 6 21-26 5 23.5 117.5 11 26-31 4 28.5 114 15 31-36 3 33.5 100.5 18 36-41 2 38.5 77 20 20 500 Now you try………. Find the mean, median, and mode of the following set. x f 63-66 2 66-69 4 69-72 8 72-75 5 75-78 2 n=21 Your finished list……. x f midpoint f(midpoint) cf 63-66 66-69 69-72 72-75 75-78 2 4 8 5 2 64.5 67.5 70.5 73.5 76.5 129 270 564 367.5 153 2 6 14 19 21 n=21 1483.5 Mean…… 1483.5 x 70.6 21 Median……. 10.5 6 median (3) 69 70.7 8 Mode…….. The mode is 69-72. x f midpoint f(midpoint) cf 63-66 2 64.5 129 2 66-69 4 67.5 270 6 69-72 8 70.5 564 14 72-75 5 73.5 367.5 19 75-78 2 76.5 153 21 n=21 1483.5 Midrange…….. The midrange = (63 + 78)/2 = 70.5 x f midpoint f(midpoint) cf 63-66 2 64.5 129 2 66-69 4 67.5 270 6 69-72 8 70.5 564 14 72-75 5 73.5 367.5 19 75-78 2 76.5 153 21 n=21 1483.5 Range, Variance and St. Deviation – Grouped Section 2.5 Grouped Data…… Variance Formula f xm f xm / n s n 1 2 2 2 Standard Deviation s s 2 Range….. High number in last row minus low number in first row. Example…… Find the variance, standard deviation, and range of the set. x f 2-8 12 8-14 4 14-20 6 20-26 22 26-32 8 n=52 Calculator Steps…… Put lower boundaries in L1 and upper boundaries in L2. Put frequencies in L3. Set a formula for midpoint in L4. Find f times midpoint by setting a formula in L5. Find f times midpoint squared in L6 by setting a formula. Your lists should look like this…… x f midpoint f (midpoint) f ( midpoint sq) 2-8 12 5 60 300 8-14 4 11 44 484 14-20 6 17 102 1734 20-26 22 23 506 11638 26-32 8 29 232 6728 944 20884 n=52 f xm f xm / n s n 1 2 2 2 Find the variance. 2 944 20884 2 52 s 73.5 51 s s 2 Find the standard deviation. s 73.46606335 8.6 Range = High - Low Range = 32 – 2 = 30 Example…… Find the mean, median, mode, midrange, range, variance, and st. deviation of the data set. x f 10 - 15 5 15 - 20 9 20 - 25 7 25 - 30 3 30 - 35 2 Here are the lists…… x f midpoint f x midpoint f x mp squared cf 10 - 15 5 12.5 62.5 781.25 5 15 - 20 9 17.5 157.5 2756.3 14 20 - 25 7 22.5 157.5 3543.8 21 25 - 30 3 27.5 82.5 2268.8 24 30 - 35 2 32.5 65 2112.5 26 525 11462.5 n=26 Mean: f xm x n 525 x 20.2 26 Median…… med med med med n cf 2 ( w) Lm f 26 5 2 (5) 15 9 (13 5) (5) 15 9 19.4 Mode…… Greatest Frequency is 9. Mode = 15-20 Midrange…… ( High Low) midrange 2 (35 10) midrange 2 45 midrange 22.5 2 Range…… Range High Low Range 35 10 Range 25 Variance…… s 2 s 2 f x 2 m ( f x m ) n 1 2 11462.5 525 25 2 n 26 34.5 St. Deviation…… s s 2 s 34.46153846 5.9 Homework……. Find the measures of center and variation for the grouped data on HW3.