Download f (midpoint)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mean, Median, Mode,
and Midrange of
Grouped Data
Section 2.5
Grouped Data……

You must add one more column than you
did using ungrouped data.

You now need a midpoint column.

The symbol for the midpoint is
xm .
Formulas……Mean

Mean
 f  xm
x
n
Median

There IS a formula to find the median
using grouped data.
n
 cf
2
median 
( w)  Lm
f
Mode……

Find the greatest frequency and read
across the chart until you see the class
that corresponds to it.

Your answer will be the entire interval.
Midrange…..

Add the lowest number in the first row to
the highest number in the last row.

Divide that answer by 2.
Example…..

Find the mean,
median, and mode of
the set of grouped
data.
x
6-11
11-16
16-21
f
1
2
3
21-26
26-31
31-36
5
4
3
36-41
2
n=20
Here is the list you should
have……
x
f
midpoint
f x midpoint
cf
6-11
11-16
16-21
1
2
3
8.5
13.5
18.5
8.5
27
55.5
1
3
6
21-26
26-31
31-36
5
4
3
23.5
28.5
33.5
117.5
114
100.5
11
15
18
36-41
2
38.5
77
20
20
500
Mean……
500
x
 25
20
Median…..

n/2 = 20/2 = 10
x
f
midpoint
f(midpoint)
cf
6-11
1
8.5
8.5
1
11-16
2
13.5
27
3
16-21
3
18.5
55.5
6
21-26
5
23.5
117.5
11
26-31
4
28.5
114
15
31-36
3
33.5
100.5
18
36-41
2
38.5
77
20
20
500
Plug values into formula….
10  6
median 
(5)  21  25
5
Mode and Midrange……


The mode is 21-26.
Midrange =
(41  6) 47

 23.5
2
2
x
f
midpoint
f(midpoint)
cf
6-11
1
8.5
8.5
1
11-16
2
13.5
27
3
16-21
3
18.5
55.5
6
21-26
5
23.5
117.5
11
26-31
4
28.5
114
15
31-36
3
33.5
100.5
18
36-41
2
38.5
77
20
20
500
Now you try……….

Find the mean,
median, and mode of
the following set.
x
f
63-66
2
66-69
4
69-72
8
72-75
5
75-78
2
n=21
Your finished list…….
x
f
midpoint
f(midpoint)
cf
63-66
66-69
69-72
72-75
75-78
2
4
8
5
2
64.5
67.5
70.5
73.5
76.5
129
270
564
367.5
153
2
6
14
19
21
n=21
1483.5
Mean……
1483.5
x
 70.6
21
Median…….
10.5  6
median 
(3)  69  70.7
8
Mode……..

The mode is 69-72.
x
f
midpoint
f(midpoint)
cf
63-66
2
64.5
129
2
66-69
4
67.5
270
6
69-72
8
70.5
564
14
72-75
5
73.5
367.5
19
75-78
2
76.5
153
21
n=21
1483.5
Midrange……..

The midrange =
(63 + 78)/2 = 70.5
x
f
midpoint
f(midpoint)
cf
63-66
2
64.5
129
2
66-69
4
67.5
270
6
69-72
8
70.5
564
14
72-75
5
73.5
367.5
19
75-78
2
76.5
153
21
n=21
1483.5
Range, Variance
and St. Deviation –
Grouped
Section 2.5
Grouped Data……

Variance Formula
 f  xm   f  xm  / n
s 
n 1
2
2
2

Standard Deviation
s
s
2
Range…..

High number in last row minus low number
in first row.
Example……

Find the variance,
standard deviation,
and range of the set.
x
f
2-8
12
8-14
4
14-20
6
20-26
22
26-32
8
n=52
Calculator Steps……

Put lower boundaries in L1 and upper
boundaries in L2. Put frequencies in L3.
Set a formula for midpoint in L4.

Find f times midpoint by setting a formula
in L5.

Find f times midpoint squared in L6 by
setting a formula.
Your lists should look like
this……
x
f
midpoint
f (midpoint)
f ( midpoint sq)
2-8
12
5
60
300
8-14
4
11
44
484
14-20
6
17
102
1734
20-26
22
23
506
11638
26-32
8
29
232
6728
944
20884
n=52
 f  xm   f  xm  / n
s 
n 1
2
2
2

Find the variance.
2
944
20884 
2
52
s 
 73.5
51
s

s
2
Find the standard deviation.
s  73.46606335  8.6
Range = High - Low

Range = 32 – 2 = 30
Example……

Find the mean,
median, mode,
midrange, range,
variance, and st.
deviation of the data
set.
x
f
10 - 15
5
15 - 20
9
20 - 25
7
25 - 30
3
30 - 35
2
Here are the lists……
x
f
midpoint
f x midpoint
f x mp squared
cf
10 - 15
5
12.5
62.5
781.25
5
15 - 20
9
17.5
157.5
2756.3
14
20 - 25
7
22.5
157.5
3543.8
21
25 - 30
3
27.5
82.5
2268.8
24
30 - 35
2
32.5
65
2112.5
26
525
11462.5
n=26
Mean:
 f  xm
x
n
525
x
 20.2
26
Median……
med
med
med
med
n  cf
 2
( w)  Lm
f
26  5
 2
(5)  15
9
(13  5)

(5)  15
9
 19.4
Mode……

Greatest Frequency is 9.

Mode = 15-20
Midrange……
( High  Low)
midrange 
2
(35  10)
midrange 
2
45
midrange 
 22.5
2
Range……
Range  High  Low
Range  35  10
Range  25
Variance……
s 
2
s 
2
 f x 
2
m
( f  x m )
n 1
2
11462.5  525
25
2
n
26  34.5
St. Deviation……
s s
2
s  34.46153846  5.9
Homework…….

Find the measures of center and variation
for the grouped data on HW3.
Related documents