Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Dr. Hugh Blanton ENTC 3331 Dr. Blanton - ENTC 3331 - Math Review 2 Measurement Units • The System of International Units (SI units) was adopted in 1960. • The use of older systems still persists, but it is always possible to convert nonstandard measurements to SI units. Dr. Blanton - ENTC 3331 - Math Review 3 SI (International Standard) Base Units • • • • meter (m) = about a yard kilogram (kg) = about 2.2 lbs liter (l) = about a quart liter (l) = 1000 mL Dr. Blanton - ENTC 3331 - Math Review 4 Fundamental Units Seven Fundamental physical phenomena. Physical Property Unit (abbreviation) length meter (m) mass kilogram (kg) time second (s) electric current ampere (A) temperature kelvin (K) number of atoms or molecules mol (mol) light Intensity Dr. Blanton - ENTC 3331 - Math Review candela (cd) 5 Unit Conversions •When converting physical values between one system of units and another, it is useful to think of the conversion factor as a mathematical equation. • In solving such equations, one must only multiply or divide both sides of the equation by the same factor to keep the equation consistent. Dr. Blanton - ENTC 3331 - Math Review 6 Unit Conversions •Example: 23 feet = ? yards Same 1 yd 23 = 7.6 23 ft yd yd Quantity 3 ft 3 Dr. Blanton - ENTC 3331 - Math Review 7 Unit Conversions •Example: 5 yd2 = ? ft2 2 2 9 3 ft 2 2 2 = 45 ft 5 yd 1 yd Dr. Blanton - ENTC 3331 - Math Review 8 Units • Fundamental Units • The SI system recognizes that there are only a few truly fundamental physical properties that need basic (and arbitrary) units of measure, and that all other units can be derived from them. Dr. Blanton - ENTC 3331 - Math Review 9 • Derived Units • The funadmental units are used as the basis of numerous derived SI units. • Note that derived SI units are sometimes named after famous physicists. Dr. Blanton - ENTC 3331 - Math Review 10 Derived Units Measureme nt Unit Unit Description force newton (N) Force required to accelerate a mass of 1 kg at 1 m/s2 pressure pascal (Pa) Pressure that exerts a force of 1 newton per m2 of surface area frequency hertz (Hz) Number of cycles of periodic activity per second energy joule (J) Energy expended in moving a resistive force of 1 newton over 1 m. power watt (W) Rate of energy expenditure of 1 joule per second. electrical charge coulomb (C) Charge that passes a point in an electrical circuit if 1 ampere of current flows for 1 second. electrical resistance ohm (W) Ratio of the voltage divided by the current in an electrical circuit. Dr. Blanton - ENTC 3331 - Math Review 11 Unit Multiplication Factors • An additional letter that denotes a multiplying factor may prefix fundamental or derived units. • The more common multiplying factors increase or decrease the unit by powers of ten. Dr. Blanton - ENTC 3331 - Math Review 12 Unit Multiplication Factors • An additional letter that denotes a multiplying factor may prefix fundamental or derived units. • The more common multiplying factors increase or decrease the unit by powers of ten. tera (T) 1012 giga (G) 109 mega (M) 106 kilo (k) 103 hecto (h) 102 deca (da) 10 deci (d) 10-1 centi (c) 10-2 milli (m) 10-3 micro (m) 10-6 nano (n) 10-9 pico (p) 10-12 10-15 femto Dr. Blanton - ENTC 3331 - Math Review 13 Powers of Ten (big) •101 = 10 •103 = 1000 (thousand) •106 = 1,000,000 (million) •109 = 1,000,000,000 (billion) Dr. Blanton - ENTC 3331 - Math Review 14 Powers of Ten (small) •100 = 1 •10-3 = 0.001 (thousandth) •10-6 = 0.000001 (millionth) •10-9 = 0.000000001 (billionth) Dr. Blanton - ENTC 3331 - Math Review 15 Scientific Notation • 7,000,000,000 • 7,000,000 • = 7 million • = 7 106 Dr. Blanton - ENTC 3331 - Math Review • = 7 billion • = 7 109 16 Scientific Notation • 7,240,000 • = 7.24 million • = 7.24 106 3 significant digits Dr. Blanton - ENTC 3331 - Math Review 17 Very Large Quantities • 7,240,000 = 7.24 106 6 decimal places Dr. Blanton - ENTC 3331 - Math Review 18 Very Small Quantities • 0.0000123 = 1.23 10-5 5 decimal places Dr. Blanton - ENTC 3331 - Math Review 19 Engineering Notation • Exponents = 3, 6, 9, 12, . . . • Instead of 5.32 107 • we write • 53.2 106 • Decimal Exponent part got got bigger smaller Dr. Blanton - ENTC 3331 - Math Review 20 Adding and Subtracting •Exponents must be the same! •(1.2 106) + (2.3 105) •change to •(1.2 106) + (0.23 106) •= 1.43 106 Dr. Blanton - ENTC 3331 - Math Review 21 Multiplying •Exponents Add •(3.1 106)(2.0 102) •= 6.2 108 Dr. Blanton - ENTC 3331 - Math Review 22 Dividing •Exponents Subtract •(3.8 106) •(2.0 102) •= 1.9 104 6-2=4 Dr. Blanton - ENTC 3331 - Math Review 23 Adding Fractions •You can only add like to like • Same Denominators 1 2 3 = 5 5 5 Dr. Blanton - ENTC 3331 - Math Review 24 Different Denominators •Make them the same • find a common denominator •The product of all denominators is always a common denominator • But not always the least common denominator Dr. Blanton - ENTC 3331 - Math Review 25 Finding the LCD •Example: 1 4 12 15 Dr. Blanton - ENTC 3331 - Math Review 26 Factor the Denominators 12 = 2 2 3 15 = 3 5 Dr. Blanton - ENTC 3331 - Math Review 27 Assemble LCD 12 = 2 2 3 15 = 3 5 2 2 3 5 = 60 Dr. Blanton - ENTC 3331 - Math Review 28 Build up Denominators to LCD 1 ×5 4 ×4 5 16 = 12 ×5 15×4 60 60 Dr. Blanton - ENTC 3331 - Math Review 29 Add Numerators 55 16 16 21 21 7 == = 60 60 60 60 60 60 20 And Reduce if Needed Dr. Blanton - ENTC 3331 - Math Review 30 Rational Expressions •Example: x -1 2x 2 2 x - 1 x - 2x 1 Dr. Blanton - ENTC 3331 - Math Review 31 Factor the Denominators x - 1 = ( x 1)( x - 1) 2 x - 2x 1 = ( x - 1)( x - 1) 2 Dr. Blanton - ENTC 3331 - Math Review 32 DENOMINATORS Assemble LCD ( x 1)( x - 1) ( x - 1)( x - 1) ( x 1)( x - 1)( x - 1) Dr. Blanton - ENTC 3331 - Math Review 33 Build up Fractions to LCD ( x - )1(x -1) 2 x (x 1) ( x 1)( x - 1) ( x - 1)( x - 1) (x -1) (x 1) FACTORED LCD = ( x 1)( x - 1)( x - 1) Dr. Blanton - ENTC 3331 - Math Review 34 Add Numerators ( x - 1)( x - 1) 2 x( x 1) ( x 1)( x - 1)( x - 1) Dr. Blanton - ENTC 3331 - Math Review 35 Simplify Numerator ( x - 1)( x - 1) 2 x( x 1) ( x 1)( x - 1)( x - 1) x - 2 x3x1 21x 2 x ( x 1)( x - 1)( x - 1) 2 2 Dr. Blanton - ENTC 3331 - Math Review 2 36 Radicals Radical Index n x Radicand Dr. Blanton - ENTC 3331 - Math Review 37 Meaning n x=y if and only if y =x n Dr. Blanton - ENTC 3331 - Math Review 38 Example 3 8=2 because 2 =8 3 Dr. Blanton - ENTC 3331 - Math Review 39 An Ambiguity 25 = 5 because •but it’s also true that. . . 5 = 25 2 Dr. Blanton - ENTC 3331 - Math Review 40 It’s also true that ( -5) = 25 2 •So why not say •? 25 = -5 Dr. Blanton - ENTC 3331 - Math Review 41 Two Answers? •Roots with an even index always have both a positive and a negative root •Because squaring either a negative or a positive gives the same result Dr. Blanton - ENTC 3331 - Math Review 42 Principal Root •To avoid confusion we define the principal root to be the positive root, so: 25 = 5 (not - 5) Dr. Blanton - ENTC 3331 - Math Review 43 The Negative Root •If we want the negative root we use a minus sign: - 25 = -5 Dr. Blanton - ENTC 3331 - Math Review 44 Negative Radicands •Do Not Confuse •With -25 -25 - 25 •!!! •Does not exist Dr. Blanton - ENTC 3331 - Math Review 45 Negative Radicands •You cannot take an even root of a negative number •Because you cannot square any number and get a negative result Dr. Blanton - ENTC 3331 - Math Review 46 Odd Roots of Negative Radicands •You can take odd roots of negative numbers: -8 = -2 because ( -2)( -2)( -2) = -8 3 Dr. Blanton - ENTC 3331 - Math Review 47 Some Square Root Identities 2 x =x •for all non-negative x x =x •for all non-negative x x = x •for all x 2 2 Dr. Blanton - ENTC 3331 - Math Review 48 A Common Error a b a b •for example, you cannot say 3 4 = 7 (WRONG!) 2 2 •What is the correct result? Dr. Blanton - ENTC 3331 - Math Review 49 First Evaluate Inside 3 4 2 2 = 9 16 = 25 =5 Dr. Blanton - ENTC 3331 - Math Review 50 Products •You can “split up” a radical when it contains a product (not a sum!): ab = a b •(as long as a and b are non-negative) Dr. Blanton - ENTC 3331 - Math Review 51 Example 400 = 16 25 = 16 25 = 4 5 = 20 Dr. Blanton - ENTC 3331 - Math Review 52 Perfect Squares •Perfect squares are numbers that have whole number square roots: 4, 9, 16, 25, 36, 49, 64, etc. •All other numbers have irrational roots Dr. Blanton - ENTC 3331 - Math Review 53 Numbers • Natural Numbers: 1, 2, 3, . . . • Whole Numbers: 0, 1, 2, 3, . . . • Integers: . . . , -2, -1, 0, 1, 2, . . . Dr. Blanton - ENTC 3331 - Math Review 54 Numbers • Rational Numbers • a/b (a,b integers, b not zero) • Irrational Numbers Cannot be a ratio of integers Decimals never repeat or end. (decimals of rationals do) Dr. Blanton - ENTC 3331 - Math Review 55 Rational and Irrational 3 Rational = 0.75 (Terminates) 4 5 Rational = 0.45454545 (Repeats) 11 2 = 1.41421356 Dr. Blanton - ENTC 3331 - Math Review Irrational 56 Numbers • Real Numbers Rationals + Irrationals All points on number line All signed distances The Number Line -6 -5 -4 -3 -2 -1 0 Dr. Blanton - ENTC 3331 - Math Review 1 2 3 4 5 57 6 Imaginary Numbers •Square root of a negative number •We Define: -1 i Math, Physics -1 j Engineering, Electronics Dr. Blanton - ENTC 3331 - Math Review 58 Properties of j j = -1 By Definition j =-j Because j 3= j 2j = (-1)j j =1 Because j 4= j 2j 2 = (-1)(-1) j = j Because j 5= j 4j = (1)j 2 3 4 5 Dr. Blanton - ENTC 3331 - Math Review 59 Expressing Square Roots of Negative Numbers -4 = (-1)4 -4 = -1 4 -4 = j 2 = 2 j Dr. Blanton - ENTC 3331 - Math Review 60 Expressing Square Roots of Negative Numbers -3 = (-1)3 -3 = -1 3 -3 = j 3 Dr. Blanton - ENTC 3331 - Math Review 61 Complex Numbers •Real Part + Imaginary Part •Example: 62j Real Part = 6 Dr. Blanton - ENTC 3331 - Math Review 62 Complex Numbers •Real Part + Imaginary Part •Example: 62j Imaginary Part = 2 Dr. Blanton - ENTC 3331 - Math Review 63 Adding and Subtracting Complex Numbers •Likes stay with likes • Re + Re = Re • Im + Im = Im •Just collecting like terms Dr. Blanton - ENTC 3331 - Math Review 64 Adding and Subtracting Complex Numbers •Example: (6 2 j ) (2 - 3 j ) =8- j Dr. Blanton - ENTC 3331 - Math Review 65 Adding and Subtracting Complex Numbers •Example: (6 2 j ) (2 - 3 j ) =8- j Dr. Blanton - ENTC 3331 - Math Review 66 Adding and Subtracting Complex Numbers •Example: (6 2 j ) (2 - 3 j ) =8- j Dr. Blanton - ENTC 3331 - Math Review 67 Multiplying •Remember that j 2 = -1 Dr. Blanton - ENTC 3331 - Math Review 68 Multiplying (6 2 j )(2 - 3 j ) = 12 - 18 j 4 j - 6 j = 12 - 14 j - 6(-1) = 18 - 14 j Dr. Blanton - ENTC 3331 - Math Review 69 2 Dividing •Complex Conjugate • Reverse sign of imaginary part Conjugate of is 62j 6-2j Dr. Blanton - ENTC 3331 - Math Review 70 Dividing • Write as fraction • Multiply numerator and denominator by the complex conjugate of denominator • Multiply and simplify Dr. Blanton - ENTC 3331 - Math Review 71 Dividing (6 2 j ) (2 - 3 j ) (6 2 j ) (2 3 j ) = (2 - 3 j ) (2 3 j ) Dr. Blanton - ENTC 3331 - Math Review 72 Dividing (6 2 j ) (2 3 j ) = (2 - 3 j ) (2 3 j ) 12 18 j 4 j 6 j = 2 46 j -6 j -9 j Dr. Blanton - ENTC 3331 - Math Review 73 2 Dividing 12 18 j 4 j 6 j = 2 46 j -6 j -9 j 12 22 j - 6 = 49 Dr. Blanton - ENTC 3331 - Math Review 74 2 Dividing 12 22 j - 6 = 49 6 22 j 6 22 = = j 13 13 13 Dr. Blanton - ENTC 3331 - Math Review 75 Graphing Complex Numbers •Real part is x-coordinate •Im. part is y-coordinate Dr. Blanton - ENTC 3331 - Math Review 76 Graphing Complex Numbers •Example: 3 + 2j (3, 2) Im Re Dr. Blanton - ENTC 3331 - Math Review 77 Polar Form •Example: 3 + 2j 3.633.4° Im q Dr. Blanton - ENTC 3331 - Math Review Re 78 Polar Form •Re + j Im rq rejq 2 r = Re Im Re = r cosq Im q = tan Re Im = r sinq 2 -1 Dr. Blanton - ENTC 3331 - Math Review 79 Trigonometric Form •r (cos q + j sin q ) •Start with Re + j Im •Substitute •Re = r cos q •Im = r sin q Dr. Blanton - ENTC 3331 - Math Review 80 Trigonometric Form •Start with Re + j Im •Substitute •r cos q + j r sin q •r (cos q + j sin q ) Dr. Blanton - ENTC 3331 - Math Review 81 Euler’s Identity e re jq jq = cosq j sin q = r (cosq j sin q ) Dr. Blanton - ENTC 3331 - Math Review 82 Complex Arithmetic •Addition & Subtraction • Easiest in rectangular form •Multiplication & Division • Easiest in polar form Dr. Blanton - ENTC 3331 - Math Review 83 Multiplication in Polar Form •(r1q1) (r2q2) •= r1r2 (q1+q2) Dr. Blanton - ENTC 3331 - Math Review 84 Division in Polar Form •(r1q1) / (r2q2) •= r1 / r2 (q1-q2) Dr. Blanton - ENTC 3331 - Math Review 85 Vectors & Scalers • There is a fundamental distinction between two types of quantity: • Scalers and • Vectors • Scalers possess a magnitude, whereas vectors have both magnitude and direction. • Properties such as mass and temperature clearly have no directionality and are examples of scalers. • A complete description of force would be impossible without specifying both the magnitude and direction of the quantity. Dr. Blanton - ENTC 3331 - Math Review 86 Vectors •Represent magnitude and direction •Example: Displacement • “go 2 miles East” Dr. Blanton - ENTC 3331 - Math Review 87 Vector Quantities •Force •Velocity •Magnetic Field Dr. Blanton - ENTC 3331 - Math Review 88 Vector Notation •Vector: Bold or arrow over F •Scalar: Italic, no arrow F Dr. Blanton - ENTC 3331 - Math Review 89 Numerical Description A vector can be represented in: •Polar Form • Magnitude and angle •Rectangular Form • x- and y-components Dr. Blanton - ENTC 3331 - Math Review 90 Polar Form V Angle V = (r, q ) V =(53, 65°) Dr. Blanton - ENTC 3331 - Math Review V = rq V = 5365° 91 Rectangular Form V Vy q Vx=V cos q Vy=V sin q Vx Dr. Blanton - ENTC 3331 - Math Review 92 Rectangular to Polar V Vy q Vx V = V V 2 x 2 y V y -1 q = tan V x Dr. Blanton - ENTC 3331 - Math Review 93 Vector Addition •Resultant vector •Not the sum of the magnitudes •Vectors add head-to-tail Dr. Blanton - ENTC 3331 - Math Review 94 Vector Addition Example •Go 3 miles East, •then 4 Miles North 4 R = 5 miles at 53° 3 Dr. Blanton - ENTC 3331 - Math Review 95 Adding Nonperpendicular Vectors •x-components add to give x-component of resultant •y-components add to give y-component of resultant Dr. Blanton - ENTC 3331 - Math Review 96 Adding Nonperpendicular Vectors R=A+B R B A Rx = Ax + Bx Dr. Blanton - ENTC 3331 - Math Review Ry = Ay + By 97 Adding Nonperpendicular Vectors Ry R By Ay B A Ax Bx Rx Dr. Blanton - ENTC 3331 - Math Review 98 Trigonometric Functions opposite •Right Triangles Only! q adjacent Dr. Blanton - ENTC 3331 - Math Review 99 adjacent Trigonometric Functions q opposite Dr. Blanton - ENTC 3331 - Math Review 100 Similar Triangles q q Dr. Blanton - ENTC 3331 - Math Review Same Angle 101 Similar Triangles q q Dr. Blanton - ENTC 3331 - Math Review Same Ratios of Sides 102 Similar Triangles •Ratios of sides depend ONLY on q •So the ratio is a function of q q Dr. Blanton - ENTC 3331 - Math Review 103 Ratios of Sides opp sin q = hyp opposite •Six Possible adj cos q = hyp q adjacent Dr. Blanton - ENTC 3331 - Math Review opp tan q = adj 104 Ratios of Sides opp sin q = hyp hyp csc q = opp adj cos q = hyp hyp sec q = adj opp tan q = adj adj cot q = opp Dr. Blanton - ENTC 3331 - Math Review 105 The Main 3 Trig Functions SOHCAHTOA opp sin q = hyp adj cos q = hyp opp tan q = adj Dr. Blanton - ENTC 3331 - Math Review 106 Solving Triangles •Find all 3 sides and 3 angles •Need: 1 side plus 2 more items • Only one more thing if it is given that one angle is 90° Dr. Blanton - ENTC 3331 - Math Review 107 Right Triangles •Need 2 sides •OR •1 side and 1 angle Dr. Blanton - ENTC 3331 - Math Review 108 Tool Kit •The Trig functions • (sin, cos, tan) •The inverse Trig functions • (sin-1, cos -1, tan -1) •The Pythagorean Theorem •Sum of angles is 180° Dr. Blanton - ENTC 3331 - Math Review 109 The Trig Functions •Find a side •Given 1 side and 1 angle opp tan q = adj adj cosq = hyp opp sin q = hyp Dr. Blanton - ENTC 3331 - Math Review 110 The Inverse Trig Functions •Find an angle •Given 2 sides Dr. Blanton - ENTC 3331 - Math Review 111 The Pythagorean Theorem •Find a side •Given 2 sides Dr. Blanton - ENTC 3331 - Math Review 112 Angles add to 180° •Find an angle •Given the other angle 90 - q q Dr. Blanton - ENTC 3331 - Math Review 113 Vector Multiplicaton • Three types vector multiplication: • Simple multiplication • Dot Product • Always yields a scaler answer. • Cross Product • Always gives a vector result. Dr. Blanton - ENTC 3331 - Math Review 114 Dot Product A B = AB cos AB Dr. Blanton - ENTC 3331 - Math Review 115 z x Dr. Blanton - ENTC 3331 - Math Review 116 A = 2 2 32 32 = 22 z A xˆ 2 yˆ 3 zˆ3 = 22 A A x Dr. Blanton - ENTC 3331 - Math Review 117