Download Introduction

Document related concepts
no text concepts found
Transcript
Dr. Hugh Blanton
ENTC 3331
Dr. Blanton - ENTC 3331 - Math Review
2
Measurement Units
• The System of International Units (SI
units) was adopted in 1960.
• The use of older systems still persists,
but it is always possible to convert nonstandard measurements to SI units.
Dr. Blanton - ENTC 3331 - Math Review
3
SI (International Standard) Base Units
•
•
•
•
meter (m) = about a yard
kilogram (kg) = about 2.2 lbs
liter (l) = about a quart
liter (l) = 1000 mL
Dr. Blanton - ENTC 3331 - Math Review
4
Fundamental Units
Seven Fundamental physical phenomena.
Physical Property
Unit (abbreviation)
length
meter (m)
mass
kilogram (kg)
time
second (s)
electric current
ampere (A)
temperature
kelvin (K)
number of atoms or molecules mol (mol)
light Intensity
Dr. Blanton - ENTC 3331 - Math Review
candela (cd)
5
Unit Conversions
•When converting physical values
between one system of units and
another, it is useful to think of the
conversion factor as a mathematical
equation.
• In solving such equations, one must
only multiply or divide both sides of the
equation by the same factor to keep the
equation consistent.
Dr. Blanton - ENTC 3331 - Math Review
6
Unit Conversions
•Example: 23 feet = ? yards
Same
 1 yd  23
 = 7.6
23 ft
yd
yd
Quantity
 3 ft  3
Dr. Blanton - ENTC 3331 - Math Review
7
Unit Conversions
•Example: 5 yd2 = ? ft2
2
2



9
3
ft
2
2
2  = 45 ft
5 yd 
1
yd


Dr. Blanton - ENTC 3331 - Math Review
8
Units
• Fundamental Units
• The SI system recognizes that there are
only a few truly fundamental physical
properties that need basic (and
arbitrary) units of measure, and that all
other units can be derived from them.
Dr. Blanton - ENTC 3331 - Math Review
9
• Derived Units
• The funadmental units are used as the
basis of numerous derived SI units.
• Note that derived SI units are
sometimes named after famous
physicists.
Dr. Blanton - ENTC 3331 - Math Review
10
Derived Units
Measureme
nt
Unit
Unit Description
force
newton (N) Force required to accelerate a mass of 1 kg at 1
m/s2
pressure
pascal
(Pa)
Pressure that exerts a force of 1 newton per m2 of
surface area
frequency
hertz (Hz)
Number of cycles of periodic activity per second
energy
joule (J)
Energy expended in moving a resistive force of 1
newton over 1 m.
power
watt (W)
Rate of energy expenditure of 1 joule per second.
electrical
charge
coulomb
(C)
Charge that passes a point in an electrical circuit if
1 ampere of current flows for 1 second.
electrical
resistance
ohm (W)
Ratio of the voltage divided by the current in an
electrical circuit.
Dr. Blanton - ENTC 3331 - Math Review
11
Unit Multiplication Factors
• An additional letter that denotes a
multiplying factor may prefix
fundamental or derived units.
• The more common multiplying factors
increase or decrease the unit by powers
of ten.
Dr. Blanton - ENTC 3331 - Math Review
12
Unit Multiplication Factors
• An additional letter that
denotes a multiplying
factor may prefix
fundamental or derived
units.
• The more common
multiplying factors
increase or decrease the
unit by powers of ten.
tera
(T)
1012
giga
(G)
109
mega
(M)
106
kilo
(k)
103
hecto
(h)
102
deca
(da)
10
deci
(d)
10-1
centi
(c)
10-2
milli
(m)
10-3
micro
(m)
10-6
nano
(n)
10-9
pico
(p)
10-12
10-15
femto
Dr. Blanton - ENTC 3331 - Math Review
13
Powers of Ten (big)
•101 = 10
•103 = 1000 (thousand)
•106 = 1,000,000 (million)
•109 = 1,000,000,000 (billion)
Dr. Blanton - ENTC 3331 - Math Review
14
Powers of Ten (small)
•100 = 1
•10-3 = 0.001 (thousandth)
•10-6 = 0.000001 (millionth)
•10-9 = 0.000000001 (billionth)
Dr. Blanton - ENTC 3331 - Math Review
15
Scientific Notation
• 7,000,000,000
• 7,000,000
• = 7 million
• = 7  106
Dr. Blanton - ENTC 3331 - Math Review
• = 7 billion
• = 7  109
16
Scientific Notation
• 7,240,000
• = 7.24 million
• = 7.24  106
3 significant digits
Dr. Blanton - ENTC 3331 - Math Review
17
Very Large Quantities
• 7,240,000 = 7.24  106
6 decimal places
Dr. Blanton - ENTC 3331 - Math Review
18
Very Small Quantities
• 0.0000123 = 1.23  10-5
5 decimal places
Dr. Blanton - ENTC 3331 - Math Review
19
Engineering Notation
• Exponents = 3, 6, 9, 12, . . .
• Instead of 5.32  107
• we write
• 53.2  106
•
Decimal Exponent
part got
got
bigger
smaller
Dr. Blanton - ENTC 3331 - Math Review
20
Adding and Subtracting
•Exponents must be the same!
•(1.2  106) + (2.3  105)
•change to
•(1.2  106) + (0.23  106)
•= 1.43  106
Dr. Blanton - ENTC 3331 - Math Review
21
Multiplying
•Exponents Add
•(3.1  106)(2.0  102)
•= 6.2  108
Dr. Blanton - ENTC 3331 - Math Review
22
Dividing
•Exponents Subtract
•(3.8  106)
•(2.0  102)
•= 1.9  104
6-2=4
Dr. Blanton - ENTC 3331 - Math Review
23
Adding Fractions
•You can only add like to like
• Same Denominators
1 2 3
 =
5 5 5
Dr. Blanton - ENTC 3331 - Math Review
24
Different Denominators
•Make them the same
• find a common denominator
•The product of all denominators is
always a common denominator
• But not always the least common
denominator
Dr. Blanton - ENTC 3331 - Math Review
25
Finding the LCD
•Example:
1 4

12 15
Dr. Blanton - ENTC 3331 - Math Review
26
Factor the Denominators
12 = 2  2  3
15 = 3  5
Dr. Blanton - ENTC 3331 - Math Review
27
Assemble LCD
12 = 2  2  3
15 = 3  5
2  2  3  5 = 60
Dr. Blanton - ENTC 3331 - Math Review
28
Build up Denominators to LCD
1 ×5 4 ×4 5 16
 =

12 ×5 15×4 60 60
Dr. Blanton - ENTC 3331 - Math Review
29
Add Numerators
55 16
16 21
21 7
 == =
60
60 60
60 60
60 20
And Reduce if Needed
Dr. Blanton - ENTC 3331 - Math Review
30
Rational Expressions
•Example:
x -1
2x

2
2
x - 1 x - 2x  1
Dr. Blanton - ENTC 3331 - Math Review
31
Factor the Denominators
x - 1 = ( x  1)( x - 1)
2
x - 2x  1 =
( x - 1)( x - 1)
2
Dr. Blanton - ENTC 3331 - Math Review
32
DENOMINATORS
Assemble LCD
( x  1)( x - 1)
( x - 1)( x - 1)
( x  1)( x - 1)( x - 1)
Dr. Blanton - ENTC 3331 - Math Review
33
Build up Fractions to LCD
( x - )1(x -1)
2 x (x 1)

( x  1)( x - 1) ( x - 1)( x - 1)
(x -1)
(x 1)
FACTORED
LCD = ( x  1)( x - 1)( x - 1)
Dr. Blanton - ENTC 3331 - Math Review
34
Add Numerators
( x - 1)( x - 1)  2 x( x  1)
( x  1)( x - 1)( x - 1)
Dr. Blanton - ENTC 3331 - Math Review
35
Simplify Numerator
( x - 1)( x - 1)  2 x( x  1)
( x  1)( x - 1)( x - 1)
x - 2 x3x1 21x  2 x
( x  1)( x - 1)( x - 1)
2
2
Dr. Blanton - ENTC 3331 - Math Review
2
36
Radicals
Radical
Index
n
x
Radicand
Dr. Blanton - ENTC 3331 - Math Review
37
Meaning
n
x=y
if and only if
y =x
n
Dr. Blanton - ENTC 3331 - Math Review
38
Example
3
8=2
because
2 =8
3
Dr. Blanton - ENTC 3331 - Math Review
39
An Ambiguity
25 = 5
because
•but it’s also true
that. . .
5 = 25
2
Dr. Blanton - ENTC 3331 - Math Review
40
It’s also true that
( -5) = 25
2
•So why not say
•?
25 = -5
Dr. Blanton - ENTC 3331 - Math Review
41
Two Answers?
•Roots with an even index always have
both a positive and a negative root
•Because squaring either a negative or a
positive gives the same result
Dr. Blanton - ENTC 3331 - Math Review
42
Principal Root
•To avoid confusion we define the
principal root to be the positive root, so:
25 = 5 (not - 5)
Dr. Blanton - ENTC 3331 - Math Review
43
The Negative Root
•If we want the negative root we use a
minus sign:
- 25 = -5
Dr. Blanton - ENTC 3331 - Math Review
44
Negative Radicands
•Do Not Confuse
•With
-25
-25
- 25
•!!!
•Does not exist
Dr. Blanton - ENTC 3331 - Math Review
45
Negative Radicands
•You cannot take an even root of a
negative number
•Because you cannot square any number
and get a negative result
Dr. Blanton - ENTC 3331 - Math Review
46
Odd Roots of Negative Radicands
•You can take odd roots of negative
numbers:
-8 = -2 because
( -2)( -2)( -2) = -8
3
Dr. Blanton - ENTC 3331 - Math Review
47
Some Square Root Identities
2
x =x
•for all non-negative x
x =x
•for all non-negative x
x = x
•for all x
2
2
Dr. Blanton - ENTC 3331 - Math Review
48
A Common Error
a b  a  b
•for example, you cannot say
3  4 = 7 (WRONG!)
2
2
•What is the correct result?
Dr. Blanton - ENTC 3331 - Math Review
49
First Evaluate Inside
3 4
2
2
= 9  16
= 25
=5
Dr. Blanton - ENTC 3331 - Math Review
50
Products
•You can “split up” a radical when it
contains a product (not a sum!):
ab = a b
•(as long as a and b are non-negative)
Dr. Blanton - ENTC 3331 - Math Review
51
Example
400 = 16  25
= 16 25
= 4  5 = 20
Dr. Blanton - ENTC 3331 - Math Review
52
Perfect Squares
•Perfect squares are numbers that
have whole number square roots: 4, 9,
16, 25, 36, 49, 64, etc.
•All other numbers have irrational roots
Dr. Blanton - ENTC 3331 - Math Review
53
Numbers
• Natural Numbers: 1, 2, 3, . . .
• Whole Numbers: 0, 1, 2, 3, . . .
• Integers: . . . , -2, -1, 0, 1, 2, . . .
Dr. Blanton - ENTC 3331 - Math Review
54
Numbers
• Rational Numbers
• a/b (a,b integers, b not zero)
• Irrational Numbers
 Cannot be a ratio of integers
 Decimals never repeat or end.
 (decimals of rationals do)
Dr. Blanton - ENTC 3331 - Math Review
55
Rational and Irrational
3
Rational
= 0.75
(Terminates)
4
5
Rational
= 0.45454545
(Repeats)
11
2 = 1.41421356
Dr. Blanton - ENTC 3331 - Math Review
Irrational
56
Numbers
• Real Numbers
 Rationals + Irrationals
 All points on number line
 All signed distances
 The Number Line
-6 -5 -4 -3 -2 -1 0
Dr. Blanton - ENTC 3331 - Math Review
1
2
3
4
5
57
6
Imaginary Numbers
•Square root of a negative number
•We Define:
-1  i
Math, Physics
-1  j Engineering, Electronics
Dr. Blanton - ENTC 3331 - Math Review
58
Properties of j
j = -1
By Definition
j =-j
Because j 3= j 2j = (-1)j
j =1
Because j 4= j 2j 2 = (-1)(-1)
j = j
Because j 5= j 4j = (1)j
2
3
4
5
Dr. Blanton - ENTC 3331 - Math Review
59
Expressing Square Roots of Negative Numbers
-4 = (-1)4
-4 = -1 4
-4 = j 2 = 2 j
Dr. Blanton - ENTC 3331 - Math Review
60
Expressing Square Roots of Negative Numbers
-3 = (-1)3
-3 = -1 3
-3 = j 3
Dr. Blanton - ENTC 3331 - Math Review
61
Complex Numbers
•Real Part + Imaginary Part
•Example:
62j
Real Part = 6
Dr. Blanton - ENTC 3331 - Math Review
62
Complex Numbers
•Real Part + Imaginary Part
•Example:
62j
Imaginary Part = 2
Dr. Blanton - ENTC 3331 - Math Review
63
Adding and Subtracting Complex Numbers
•Likes stay with likes
• Re + Re = Re
• Im + Im = Im
•Just collecting like terms
Dr. Blanton - ENTC 3331 - Math Review
64
Adding and Subtracting Complex Numbers
•Example:
(6  2 j )  (2 - 3 j )
=8- j
Dr. Blanton - ENTC 3331 - Math Review
65
Adding and Subtracting Complex Numbers
•Example:
(6  2 j )  (2 - 3 j )
=8- j
Dr. Blanton - ENTC 3331 - Math Review
66
Adding and Subtracting Complex Numbers
•Example:
(6  2 j )  (2 - 3 j )
=8- j
Dr. Blanton - ENTC 3331 - Math Review
67
Multiplying
•Remember that j 2 = -1
Dr. Blanton - ENTC 3331 - Math Review
68
Multiplying
(6  2 j )(2 - 3 j )
= 12 - 18 j  4 j - 6 j
= 12 - 14 j - 6(-1)
= 18 - 14 j
Dr. Blanton - ENTC 3331 - Math Review
69
2
Dividing
•Complex Conjugate
• Reverse sign of imaginary part
Conjugate of
is
62j
6-2j
Dr. Blanton - ENTC 3331 - Math Review
70
Dividing
• Write as fraction
• Multiply numerator and denominator by
the complex conjugate of denominator
• Multiply and simplify
Dr. Blanton - ENTC 3331 - Math Review
71
Dividing
(6  2 j )  (2 - 3 j )
(6  2 j ) (2  3 j )
=
(2 - 3 j ) (2  3 j )
Dr. Blanton - ENTC 3331 - Math Review
72
Dividing
(6  2 j ) (2  3 j )
=
(2 - 3 j ) (2  3 j )
12  18 j  4 j  6 j
=
2
46 j -6 j -9 j
Dr. Blanton - ENTC 3331 - Math Review
73
2
Dividing
12  18 j  4 j  6 j
=
2
46 j -6 j -9 j
12  22 j - 6
=
49
Dr. Blanton - ENTC 3331 - Math Review
74
2
Dividing
12  22 j - 6
=
49
6  22 j 6 22
=
= 
j
13
13 13
Dr. Blanton - ENTC 3331 - Math Review
75
Graphing Complex Numbers
•Real part is x-coordinate
•Im. part is y-coordinate
Dr. Blanton - ENTC 3331 - Math Review
76
Graphing Complex Numbers
•Example: 3 + 2j  (3, 2)
Im
Re
Dr. Blanton - ENTC 3331 - Math Review
77
Polar Form
•Example: 3 + 2j  3.633.4°
Im
q
Dr. Blanton - ENTC 3331 - Math Review
Re
78
Polar Form
•Re + j Im  rq rejq
2
r = Re  Im
Re = r cosq
 Im 
q = tan  
 Re 
Im = r sinq
2
-1
Dr. Blanton - ENTC 3331 - Math Review
79
Trigonometric Form
•r (cos q + j sin q )
•Start with Re + j Im
•Substitute
•Re = r cos q
•Im = r sin q
Dr. Blanton - ENTC 3331 - Math Review
80
Trigonometric Form
•Start with Re + j Im
•Substitute
•r cos q + j r sin q
•r (cos q + j sin q )
Dr. Blanton - ENTC 3331 - Math Review
81
Euler’s Identity
e
re
jq
jq
= cosq  j sin q
= r (cosq  j sin q )
Dr. Blanton - ENTC 3331 - Math Review
82
Complex Arithmetic
•Addition & Subtraction
• Easiest in rectangular form
•Multiplication & Division
• Easiest in polar form
Dr. Blanton - ENTC 3331 - Math Review
83
Multiplication in Polar Form
•(r1q1) (r2q2)
•= r1r2 (q1+q2)
Dr. Blanton - ENTC 3331 - Math Review
84
Division in Polar Form
•(r1q1) / (r2q2)
•= r1 / r2 (q1-q2)
Dr. Blanton - ENTC 3331 - Math Review
85
Vectors & Scalers
• There is a fundamental distinction between
two types of quantity:
• Scalers and
• Vectors
• Scalers possess a magnitude, whereas vectors have
both magnitude and direction.
• Properties such as mass and temperature clearly have
no directionality and are examples of scalers.
• A complete description of force would be impossible
without specifying both the magnitude and direction of
the quantity.
Dr. Blanton - ENTC 3331 - Math Review
86
Vectors
•Represent magnitude and direction
•Example: Displacement
• “go 2 miles East”
Dr. Blanton - ENTC 3331 - Math Review
87
Vector Quantities
•Force
•Velocity
•Magnetic Field
Dr. Blanton - ENTC 3331 - Math Review
88
Vector Notation
•Vector: Bold or arrow over

F
•Scalar: Italic, no arrow
F
Dr. Blanton - ENTC 3331 - Math Review
89
Numerical Description
A vector can be represented in:
•Polar Form
• Magnitude and angle
•Rectangular Form
• x- and y-components
Dr. Blanton - ENTC 3331 - Math Review
90
Polar Form
V
Angle
V = (r, q )
V =(53, 65°)
Dr. Blanton - ENTC 3331 - Math Review
V = rq
V = 5365°
91
Rectangular Form
V
Vy
q
Vx=V cos q
Vy=V sin q
Vx
Dr. Blanton - ENTC 3331 - Math Review
92
Rectangular to Polar
V
Vy
q
Vx
V = V V
2
x
2
y
V

y 
-1
q = tan  
V
 x
Dr. Blanton - ENTC 3331 - Math Review
93
Vector Addition
•Resultant vector
•Not the sum of the magnitudes
•Vectors add head-to-tail
Dr. Blanton - ENTC 3331 - Math Review
94
Vector Addition Example
•Go 3 miles East,
•then 4 Miles North
4
R = 5 miles at 53°
3
Dr. Blanton - ENTC 3331 - Math Review
95
Adding Nonperpendicular Vectors
•x-components add to give
x-component of resultant
•y-components add to give
y-component of resultant
Dr. Blanton - ENTC 3331 - Math Review
96
Adding Nonperpendicular Vectors
R=A+B
R
B
A
Rx = Ax + Bx
Dr. Blanton - ENTC 3331 - Math Review
Ry = Ay + By
97
Adding Nonperpendicular Vectors
Ry
R
By
Ay
B
A
Ax
Bx
Rx
Dr. Blanton - ENTC 3331 - Math Review
98
Trigonometric Functions
opposite
•Right Triangles Only!
q
adjacent
Dr. Blanton - ENTC 3331 - Math Review
99
adjacent
Trigonometric Functions
q
opposite
Dr. Blanton - ENTC 3331 - Math Review
100
Similar Triangles
q
q
Dr. Blanton - ENTC 3331 - Math Review
Same Angle
101
Similar Triangles
q
q
Dr. Blanton - ENTC 3331 - Math Review
Same Ratios
of Sides
102
Similar Triangles
•Ratios of sides depend ONLY on q
•So the ratio is a function of q
q
Dr. Blanton - ENTC 3331 - Math Review
103
Ratios of Sides
opp
sin q =
hyp
opposite
•Six Possible
adj
cos q =
hyp
q
adjacent
Dr. Blanton - ENTC 3331 - Math Review
opp
tan q =
adj
104
Ratios of Sides
opp
sin q =
hyp
hyp
csc q =
opp
adj
cos q =
hyp
hyp
sec q =
adj
opp
tan q =
adj
adj
cot q =
opp
Dr. Blanton - ENTC 3331 - Math Review
105
The Main 3 Trig Functions
SOHCAHTOA
opp
sin q =
hyp
adj
cos q =
hyp
opp
tan q =
adj
Dr. Blanton - ENTC 3331 - Math Review
106
Solving Triangles
•Find all 3 sides and 3 angles
•Need: 1 side plus 2 more items
• Only one more thing if it is given that
one angle is 90°
Dr. Blanton - ENTC 3331 - Math Review
107
Right Triangles
•Need 2 sides
•OR
•1 side and 1 angle
Dr. Blanton - ENTC 3331 - Math Review
108
Tool Kit
•The Trig functions
• (sin, cos, tan)
•The inverse Trig functions
• (sin-1, cos -1, tan -1)
•The Pythagorean Theorem
•Sum of angles is 180°
Dr. Blanton - ENTC 3331 - Math Review
109
The Trig Functions
•Find a side
•Given 1 side and 1 angle
opp
tan q =
adj
adj
cosq =
hyp
opp
sin q =
hyp
Dr. Blanton - ENTC 3331 - Math Review
110
The Inverse Trig Functions
•Find an angle
•Given 2 sides
Dr. Blanton - ENTC 3331 - Math Review
111
The Pythagorean Theorem
•Find a side
•Given 2 sides
Dr. Blanton - ENTC 3331 - Math Review
112
Angles add to 180°
•Find an angle
•Given the other angle
90 - q
q
Dr. Blanton - ENTC 3331 - Math Review
113
Vector Multiplicaton
• Three types vector multiplication:
• Simple multiplication
• Dot Product
• Always yields a scaler answer.
• Cross Product
• Always gives a vector result.
Dr. Blanton - ENTC 3331 - Math Review
114
Dot Product
 
A  B = AB cos AB
Dr. Blanton - ENTC 3331 - Math Review
115
z
x
Dr. Blanton - ENTC 3331 - Math Review
116

A = 2 2  32  32 = 22
z

A xˆ 2  yˆ 3  zˆ3
 =
22
A

A
x
Dr. Blanton - ENTC 3331 - Math Review
117
Related documents