Download Chapter 5: Structure and Function of Macromolecules

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AP Biology
Mrs. Ramon
The Molecules of Life

Macromolecules
 LARGE molecules
 Four classes:
Carbohydrates
2. Lipids (Fats)
3. Proteins
4. Nucleic Acids
1.
 How are macromolecules made?

Activity: Making and Breaking Polymers
Carbohydrates
 Functions
 Fuel
 Binding material
 Monomer
 Monosaccharides (CH2O)
 Polymer
 Polysaccharides
 Bond
 Glycosidic linkage

Activity: Carbohydrates
Fig. 5-3
Trioses (C3H6O3)
Pentoses (C5H10O5)
Hexoses (C6H12O6)
Glyceraldehyde
Ribose
Glucose
Galactose
Dihydroxyacetone
Ribulose
Fructose
Fig. 5-6
Chloroplast
Mitochondria Glycogen granules
Starch
0.5 µm
1 µm
Glycogen
Amylose
Amylopectin
(a) Starch: a plant polysaccharide
(b) Glycogen: an animal polysaccharide
Fig. 5-9
Fig. 5-10
(a) The structure
of the chitin
monomer.
(b) Chitin forms the
exoskeleton of
arthropods.
(c) Chitin is used to make
a strong and flexible
surgical thread.
Lipids
 Components
 Glycerol and fatty acids
 Bond
 Ester linkage
 Three types:
1. Fats
2. Phospholipids
3. Steroids
Fig. 5-11
Fatty acid
(palmitic acid)
Glycerol
(a) Dehydration reaction in the synthesis of a fat
Ester linkage
(b) Fat molecule (triacylglycerol)
Fig. 5-12
Structural
formula of a
saturated fat
molecule
Stearic acid, a
saturated fatty
acid
(a) Saturated fat
Structural formula
of an unsaturated
fat molecule
Oleic acid, an
unsaturated
fatty acid
(b) Unsaturated fat
cis double
bond causes
bending
Hydrophobic tails
Hydrophilic head
Fig. 5-13
(a) Structural formula
Choline
Phosphate
Glycerol
Fatty acids
Hydrophilic
head
Hydrophobic
tails
(b) Space-filling model
(c) Phospholipid symbol
Fig. 5-14
Hydrophilic
head
Hydrophobic
tail
WATER
WATER
Fig. 5-15
Proteins
 Functions








Structure
Storage
Transport
Hormones
Signaling
Movement
Defense
Enzymatic
 Monomer
 Amino acid
 Polymer
 Polypeptide
 Bond
 Peptide bond
Fig. 5-16
Substrate
(sucrose)
Glucose
Enzyme
(sucrase)
OH
Fructose
HO
H2O
Fig. 5-UN1
 carbon
Amino
group
Carboxyl
group
Fig. 5-17a
Nonpolar
Glycine
(Gly or G)
Methionine
(Met or M)
Alanine
(Ala or A)
Valine
(Val or V)
Phenylalanine
(Phe or F)
Leucine
(Leu or L)
Tryptophan
(Trp or W)
Isoleucine
(Ile or I)
Proline
(Pro or P)
Fig. 5-17b
Polar
Serine
(Ser or S)
Threonine
(Thr or T)
Cysteine
(Cys or C)
Tyrosine
(Tyr or Y)
Asparagine Glutamine
(Asn or N) (Gln or Q)
Fig. 5-17c
Electrically
charged
Acidic
Aspartic acid Glutamic acid
(Glu or E)
(Asp or D)
Basic
Lysine
(Lys or K)
Arginine
(Arg or R)
Histidine
(His or H)
Fig. 5-19
Groove
Groove
(a) A ribbon model of lysozyme
(b) A space-filling model of lysozyme
Fig. 5-20
Antibody protein
Protein from flu virus
Fig. 5-21
Primary
Structure
Secondary
Structure
 pleated sheet
+H N
3
Amino end
Examples of
amino acid
subunits
 helix
Tertiary
Structure
Quaternary
Structure
Fig. 5-21f
Hydrophobic
interactions and
van der Waals
interactions
Polypeptide
backbone
Hydrogen
bond
Disulfide bridge
Ionic bond
Fig. 5-21g
Polypeptide
chain
 Chains
Iron
Heme
 Chains
Hemoglobin
Collagen
Fig. 5-22
Normal hemoglobin
Primary
structure
Val His Leu Thr Pro Glu Glu
1
2
3
4
5
6
7
Secondary
and tertiary
structures
 subunit
Function
Normal
hemoglobin
(top view)
Secondary
and tertiary
structures
1
2
3
Normal red blood
cells are full of
individual
hemoglobin
moledules, each
carrying oxygen.
6
7
 subunit

Sickle-cell
hemoglobin

Function

Molecules
interact with
one another and
crystallize into
a fiber; capacity
to carry oxygen
is greatly reduced.
10 µm
Red blood
cell shape
5
Exposed
hydrophobic
region

Molecules do
not associate
with one
another; each
carries oxygen.
4

Quaternary
structure

Val His Leu Thr Pro Val Glu


Quaternary
structure
Sickle-cell hemoglobin
Primary
structure
10 µm
Red blood
cell shape
Fibers of abnormal
hemoglobin deform
red blood cell into
sickle shape.
Fig. 5-22c
10 µm
Normal red blood
cells are full of
individual
hemoglobin
molecules, each
carrying oxygen.
10 µm
Fibers of abnormal
hemoglobin deform
red blood cell into
sickle shape.
Fig. 5-23
Denaturation
Normal protein
Renaturation
Denatured protein
Nucleic Acids
 Functions
 Genetic info.
 Monomer
 Nucleotide
 Polymer
 Polynucleotides
 Bond
 Phosphodiester linkage
Fig. 5-26-3
DNA
1 Synthesis of
mRNA in the
nucleus
mRNA
NUCLEUS
CYTOPLASM
mRNA
2 Movement of
mRNA into cytoplasm
via nuclear pore
Ribosome
3 Synthesis
of protein
Polypeptide
Amino
acids
Fig. 5-27
5 end
Nitrogenous bases
Pyrimidines
5C
3C
Nucleoside
Nitrogenous
base
Cytosine (C)
Thymine (T, in DNA) Uracil (U, in RNA)
Purines
Phosphate
group
5C
Sugar
(pentose)
Adenine (A)
Guanine (G)
(b) Nucleotide
3C
Sugars
3 end
(a) Polynucleotide, or nucleic acid
Deoxyribose (in DNA)
Ribose (in RNA)
(c) Nucleoside components: sugars
Fig. 5-28
5' end
3' end
Sugar-phosphate
backbones
Base pair (joined by
hydrogen bonding)
Old strands
Nucleotide
about to be
added to a
new strand
3' end
5' end
New
strands
5' end
3' end
5' end
3' end
Fig. 5-UN9
You should now be able to:
1.
2.
3.
4.
5.
List and describe the four major classes of molecules
Describe the formation of a glycosidic linkage and
distinguish between monosaccharides, disaccharides,
and polysaccharides
Distinguish between saturated and unsaturated fats
Describe the four levels of protein structure
Distinguish between the following pairs: pyrimidine
and purine, nucleotide and nucleoside, ribose and
deoxyribose, the 5 end and 3 end of a nucleotide
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Related documents