Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
metabolic pathways respiration chapter 13-14 • metabolism • metabolic pathways • usually in specific location • convert substrates to end products via intermediates • anabolic • catabolic redox reactions mitochondria • oxidation-reduction reactions • reducing agent - electron donor • oxidizing agent - electron acceptor • shape • highly variable • can fuse or split • structure • outer membrane • inner membrane • cristae • intermembrane space • mitochondrial matrix • free ribosomes • respiratory enzymes mitochondria cellular respiration • reproduction • can fuse or split • DRP1 • interacts with ER tubules • oligomerizes at constriction point • combustion H + 1/ O 2 2 + 2H 2 1/ 2 O 1/ 2 O 2 (from food via NADH) Controlled release of energy for synthesis of ATP 2 H+ + 2 e− Free energy, G rt spo tran tron ain ch DRP1 Explosive release of heat and light energy ATP Elec Free energy, G becomes oxidized ATP becomes reduced ATP 2 e− ER tubule 2 H+ HO HO 2 2 (a) Uncontrolled reaction (b) Cellular respiration oxidizing agents cellular respiration • NADH - (nicotinamide adenine dinucleotide) • glycolysis • pyruvate oxidation - citric acid cycle • oxidative phosphorylation NAD+ 2 NADH Dehydrogenase Electrons carried via NADH Reduction of NAD+ (from food) Nicotinamide (oxidized form) Oxidation of NADH Nicotinamide (reduced form) Glycolysis Glucose Pyruvate Electrons carried via NADH and FADH 2 Pyruvate oxidation Acetyl CoA Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis MITOCHONDRION CYTOSOL ATP Substrate-level phosphorylation ATP Substrate-level phosphorylation ATP Oxidative phosphorylation glycolysis glycolysis • glycolysis - • glycolysis - Glycolysis: Energy Investment Phase splitting of sugar • energy investment • energy payoff ATP Glucose Glucose 6-phosphate ADP Hexokinase 1 ATP Fructose 1,6-bisphosphate ADP Fructose 6-phosphate Phosphogluco- isomerase Phospho- fructokinase 2 Aldolase 3 Dihydroxyacetone phosphate 4 Glyceraldehyde 3-phosphate Isomerase 5 To step 6 splitting of sugar • energy investment • energy payoff Glycolysis: Energy Investment Phase ATP Glucose Glucose 6-phosphate ADP ATP Fructose 1,6-bisphosphate ADP Fructose 6-phosphate Phosphogluco- isomerase Hexokinase 1 Phospho- fructokinase 2 Aldolase 3 Dihydroxyacetone phosphate 4 Glyceraldehyde 3-phosphate Isomerase To step 6 5 Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 NAD+ + 2 H+ Triose phosphate dehydrogenase2 6 P 2 2 Phospho- glycerokinase i 2 ATP 2H O 2 ADP 2 2 ADP 1,3-Bisphospho- glycerate 7 2 Phospho- glyceromutase 3-Phospho- glycerate 8 Enolase 9 2-Phospho- glycerate Pyruvate kinase Phosphoenol- 10 pyruvate (PEP) oxidation of pyruvate sources of Acetyl CoA • preparation of pyruvate for citric acid cycle • pyruvate dehydrogenase complex • 3 reactions MITOCHONDRION • Acetyl CoA • used to fuel the citric acid cycle • catabolic sources • pyruvate - from glucose • fatty acid cycle (spiral) • digestion of amino acids CYTOSOL CO Coenzyme A 2 3 1 Proteins Amino acids Carbohydrates Sugars Glycolysis Glucose Glyceraldehyde 3- P 2 Pyruvate NAD+ NADH NH 3 + H+ Acetyl CoA Pyruvate Acetyl CoA Transport protein Citric acid cycle Oxidative phosphorylation Pyruvate Fats Glycerol Fatty acids fatty acid spiral citric acid cycle • fatty acid activated • Fatty acyl-CoA synthetase • 2 carbons trimmed per turn • steps • activation • oxidation • hydration • oxidation • thiolysis thiolysis • other names • TCA cycle, Krebs cycle Pyruvate CO NAD+ 2 CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle oxidation 2 CO FADH 2 hydration 2 3 NAD+ 3 NADH FAD + 3 H+ ADP + P oxidation citric acid cycle electron transport • stepwise cycle • oxaloacetate + acetyl CoA • Reduced coenzymes • NADH and FADH2 • used to produce ATP• account for most of the energy produced oxidative phosphorylation • • energy from redox reactions used to produce ATP --> (6 carbon) • citrate decomposed back to oxaloacetate i ATP Acetyl CoA CoA-SH NADH HO 1 + H+ 2 NAD+ Oxaloacetate 8 2 Malate Citrate Isocitrate NAD+ Citric acid cycle 7 HO 2 NADH 3 H+ + H+ H+ CO 2 H+ Fumarate CoA-SH α-Ketoglutarate 6 4 CoA-SH 5 FADH 2 NAD+ FAD i GTP GDP Succinyl CoA IV Q 2 III I + H+ II FADH ADP ATP H+ Cyt c CO NADH P Succinate Protein complex of electron carriers FAD 2 H+ + 1/ O 2 ATP synth- ase HO 2 2 2 NADH NAD+ ADP + P (carrying electrons from food) ATP i H+ 1 Electron transport chain Oxidative phosphorylation 2 Chemiosmosis NAD+ FADH 2 2 e− 40 I FMN Fe•S Fe•S Multiprotein complexes FAD II Q III Cyt b Fe•S 30 Cyt c IV 1 Cyt c Cyt a Cyt a 3 20 2 e− 10 (originally from NADH or FADH ) • types of electron carriers • flavoproteins • cytochromes • three copper atoms • ubiquinone • iron sulfur proteins NADH 50 2 e− NAD+ FADH 2 2 e− 40 FMN Fe•S II Fe•S Q III Cyt b Fe•S 30 Cyt c 2 H+ + 1/ O 2 IV 1 Cyt c Cyt a Cyt a 3 20 2 e− 10 (originally from NADH or FADH ) 2 0 Multiprotein complexes FAD I 2 2 e− 2 electrons • each time, electrons lose free energy • H+ pumped out • chemiosmosis • potential energy stored in H+ gradient used to synthesize ATP NADH 50 Free energy (G) relative to O (kcal/mol) • electron tranport chain • multiprotein complexes • accept and donate electron transport Free energy (G) relative to O (kcal/mol) electron transport 2 2 H+ + 1/ O 0 2 2 HO HO 2 electron transport INTERMEMBRANE SPACE NADH 2 e− NAD+ FADH 2 2 e− 40 I FMN Fe•S Fe•S 2 Multiprotein complexes FAD II Q III Cyt b 30 Fe•S Cyt c IV 1 Cyt c Cyt a 20 10 2 proton motive force 50 Free energy (G) relative to O (kcal/mol) • complex I • NADH dehydrogenase • flavin mononucleotide • iron-sulfur protein complex II • • succinate dehydrogenase • FADH2 - lower energy • complex III • cytochrome bc1 • complex IV • cytocrome c oxidase Cyt a • ATP-synthase • exergonic flow of H+ used to power ATP production • F0 • 10-14 subunits • rotor turns F0 F • 1 • catalytic portion H+ Stator Rotor 3 Internal rod F1 2 e− (originally from NADH or FADH ) Catalytic knob 2 ADP 0 2 2 H+ + 1/ O 2 + 2 P i MITOCHONDRIAL MATRIX HO 2 ATP proton motive force binding change mech. INTERMEMBRANE SPACE • molecular mill • F0 • H+ flows into half channel • binds with rotor subunits • rotor turns • F1 • internal rod spins • catalytic portion fixed H+ Stator Rotor • catalysis of ATP • three binding sites • three conformations (active site) • loose • binds with ADP and P • tight • • Internal rod • Catalytic knob ATP formed open ATP released ADP + P ATP i MITOCHONDRIAL MATRIX energy accounting anaerobic • about 32 ATP molecules produced from glucose • fermentation • glycolysis • pyruvate • pyruvate • reduced to lactate • no release of CO2 Electron shuttles span membrane MITOCHONDRION 2 NADH or 2 FADH 2 2 NADH Glycolysis Glucose 2 Pyruvate 2 NADH Pyruvate oxidation 2 Acetyl CoA + 2 ATP Citric acid cycle + 2 ATP Maximum per glucose: CYTOSOL 6 NADH About 30 or 32 ATP 2 FADH 2 Oxidative phosphorylation: electron transport and chemiosmosis + about 26 or 28 ATP 2 ADP + 2 P Glucose 2 ATP i Glycolysis 2 NAD + 2 NADH +2 H + Lactate dehydrogenase 2 Lactate 2 Pyruvate anaerobic related organelles • eukaryotes • if O2 not available • pyruvate undergoes fermentation • peroxisomes • similar to mitochondria in some ways • form from pre-existing organelles • import pre-formed proteins • oxidative metabolism related organelles • glyoxysomes • specialized peroxisome in plants