Download fast - Control and Dynamical Systems

Document related concepts
no text concepts found
Transcript
Mechanics+
Gravity +
Light +
vision
Balancing
an inverted
pendulum
Act


p 
ln T  j   2
d
2 

0
 p  
1
z p
 p  ln
z p
delay
+ Neuroscience
vision
delay
Balancing an
inverted pendulum
Act

 2p 
ln T  j   2
d  p
2 

 0
 p  
1
Law #1 : Mechanics
(instead of chemistry)
Law #2 : Gravity
(instead of autocatalysis)


2
M

m
x

ml

cos



sin   u


easy
hard
x cos  l  g sin   0
y  x   l sin 
 M  m  x  ml  u
x  l  g  0
linearize
y  x   l


2
M

m
x

ml

cos



sin   u


x cos  l  g sin   0
y  x   l sin 
linearize
 M  m  x  ml  u
x  l  g  0
y  x   l
m
l
M
Law #3 : Light
 M  m  x  ml
u
x  l  g  0
y  x   l
Why?
vision
delay
hard
harder
Act
Easy to prove using simple models.
noise
error
eye
vision
slow
l
E
T  j  
N
delay
Control
1
p
l
Act
Law #4 :

 2p
ln T  j   2
2

 0
p



1

d  p

8
1
p
l
Fragility
4
p
  .3s
2
1
.05
.1
.2
.5
Length l (meters)
1
Law #4 :

 2p
ln T  j   2
2

 0
p



1

d  p

8
1
p
l
Fragility
4
p
  .3s
2
  .1s
1
.05
.1
.2
.5
Length l (meters)
1
Crashes
can be
made rare
with active
control.
What is sensed matters.
hard
harder
hardest!
Why?
Easy to prove using simple models.
What is sensed matters.
hard
Unstable poles
harder
hardest!
Unstable zeros

 2p
ln T  j   2
2

 0
p



1

z p
d   p  ln
z p

8
Fragility
p
l0  l  1
4
l0  l
z p
 ln
2
z p
  .1s
  .3s
1
.05
.1
.2
.5
Length (meters)
1
1.2
easy
3.5
1
3
Measure
Length
l0, m
0.8
2.5
0.6
hard
2
0.4 hard
1.5
1
0.2
fragile
(hard)
0.4
0.6
0.8
1
Length l to CoM, m
robust
(easy)
Completing the story
vision
Balancing
an inverted
pendulum
Act
Mechanics+
Gravity +
Light +


p 
ln T  j   2
d
2 

0
 p  
1
z p
 p  ln
z p
delay
+ Neuroscience
Explain this
amazing
system.
Slow
Vision
Fast
Flexible
Inflexible
• Neuroscience motivation
Robust vision with motion
Motion
Vision
Experiment
•
•
Motion/vision control without blurring
Which is easier?
Why?
• Mechanism
• Tradeoff
Slow
vision
Fast
VOR
Slow
Mechanism
Vestibular
Ocular
Reflex
(VOR)
vision
Tradeoff
VOR
Fast
Flexible
Inflexible
eye
Act
Slow
vision
slow
delay
vision
Fast
Flexible
Inflexible
eye
vision
fast
slow
Act
Slow
delay
vision
VOR
Fast
Flexible
Inflexible
eye
fast
Act
Vestibular
Ocular
Reflex
(VOR)
Slow
VOR
Fast
Flexible
Inflexible
eye
fast
Act
Slow
VOR
Fast
Flexible
Inflexible
eye
vision
fast
slow
Act
Slow
delay
vision
VOR
Fast
Flexible
Inflexible
eye
vision
slow
Act
Highly
evolved
(hidden)
architecture
Slow
vision
Fast
Illusion
VOR
Flexible
Inflexible
delay
eye
vision
fast slow
Act
delay
Slow
vision
Fast
Illusion
VOR
Flexible
Inflexible
Fragile
Slow
Fast
Ideal
Flexible
Inflexible
Fragile
Slow
Fast
Architecture
(constraints that
deconstrain)
Ideal
Flexible
Inflexible
eye
vision
fast
slow
Act
Slow
delay
vision
VOR
Fast
Flexible
Inflexible
VOR
eye
vision
slow
Act
Balancing
an inverted
pendulum
Act
delay
fast
Control
noise
error
eye
vision
slow
l
E
T  j  
N
delay
Control
1
p
l
Act
Law #4 :

 2p
ln T  j   2
2

 0
p



1

d  p

8
1
p
l
Fragility
4
p
  .3s
2
1
.05
.1
.2
.5
Length l (meters)
1
What is sensed matters.
hard
harder
hardest!
Why?
Easy to prove using simple models.
8
Fragility
p
l0  l  1
4
l0  l
z p
2
 ln
z p
  .1s
1
.05
.1
.2
.5
Length (meters)
1
1.2
easy
3.5
1
3
Measure
Length
l0, m
0.8
2.5
0.6
hard
2
0.4 hard
1.5
1
0.2
fragile
(hard)
0.4
0.6
0.8
1
Length l to CoM, m
robust
(easy)
Slowest
3D +
motion
eye
vision
fast
Act
Slow
color
vision
delay
vision
VOR
Fast
Flexible
slow
Inflexible
B&W (luminence only):
3D, motion, and action
3D +
motion
eye
vision
fast
Act
Slow
delay
vision
VOR
Fast
Flexible
slow
Inflexible
Stare
at thegood.
intersection
This
is pretty
Stare
at thegood.
intersection
This
is pretty
Slowest
3D +
motion
eye
vision
fast
Act
Slow
color
vision
delay
vision
VOR
Fast
Flexible
slow
Inflexible
Seeing is dreaming
color
vision
Slow
vision
VOR
Fast
Flexible
Inflexible
slower
Objects
Slow
3d+motion
B&W
slow
Fast
Mixed
Flexible
fast
VOR
Inflexible
Not sure how to draw this…
slower
Objects
Slow
Faces
3d+motion
B&W
slow
Fast
Mixed
Flexible
fast
VOR
Inflexible
eye
Seeing is dreaming
slow
Act
Highly
evolved
(hidden)
architecture
Slow
vision
Fast
Illusion
VOR
Flexible
Inflexible
vision
delay
Conscious
perception
Seeing is dreaming
3D
+time
Simulation
+ complex
models
(“priors”)
Conscious
perception
Prediction
&Control
errors
Other dimensions?
Slow
Cheap
Fast
Costly
Flexible
Inflexible
General
Special
Requirements on systems and architectures
accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
credible
process
capable
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable
dependable
deployable
discoverable
distributable
durable
effective
efficient
evolvable
extensible
fail transparent
fast
fault-tolerant
fidelity
flexible
inspectable
installable
Integrity
interchangeable
interoperable
learnable
maintainable
manageable
mobile
modifiable
modular
nomadic
operable
orthogonality
portable
precision
predictable
producible
provable
recoverable
relevant
reliable
repeatable
reproducible
resilient
responsive
reusable
robust
safety
scalable
seamless
self-sustainable
serviceable
supportable
securable
simplicity
stable
standards
compliant
survivable
sustainable
tailorable
testable
timely
traceable
ubiquitous
understandable
upgradable
usable
Sustainable  robust + efficient
accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable
dependable
deployable
discoverable
distributable
durable
effective
manageable
safety
mobile
scalable
modifiable
seamless
modular
self-sustainable
nomadic
serviceable
operable
supportable
efficient orthogonality securable
evolvable
portable
simple
extensible
precision
stable
fail transparent predictable
standards
fast
producible
survivable
fault-tolerant
provable
sustainable
fidelity
recoverable
tailorable
flexible
relevant
testable
inspectable
reliable
timely
installable
repeatable
traceable
Integrity
reproducible ubiquitous
interchangeable resilient
understandable
interoperable
responsive
upgradable
learnable
reusable
usable
maintainable
robust
PCA  Principal Concept Analysis 
accessible
dependable
manageable safety
accountable
deployable
mobile
scalable
accurate
discoverable
modifiable
seamless
adaptable
distributable
modular
self-sustainable
administrable durable
nomadic
serviceable
affordable
effective
operable
supportable
auditablefragileefficient
orthogonalit securable
Simple
autonomy
evolvable
y
simple
available
extensible dichotomous
portable
stable
compatible
fail
precision
standards
tradeoff
pairs
composable
transparent
predictable
survivable
configurable
fast
producible sustainable
correctness
fault-tolerant
provable
tailorable
robustfidelity
customizable
recoverable testable
debugable
flexible
relevant
timely
degradable
inspectable
reliablewasteful
traceable
efficient
determinable installable
repeatable
ubiquitous
demonstrable Integrity
reproducible understandable
interchangeabl resilient
upgradable
e
responsive
usable
interoperable
reusable
robust
learnable
maintainable
UG biochem, math,
control theory
Chandra, Buzi, and Doyle
Most important paper so far.
Hard tradeoff in glycolysis is
• robustness vs efficiency
• absent without autocatalysis
• too fragile with simple control
• plausibly robust with complex control
fragile
1
10
too
fragile
z p
z p

 z 
ln S  j   2
d
2 

0
 z  
1
complex
0
z p
 ln
z p
No tradeoff
10 -1
10
k
0
10
1
10
expensive
VOR
8
eye
vision
slow
Act
Fragility
4
p
delay
fast
Balancing
an inverted
pendulum
Act
l0  l  1
Control
 ln
l0  l
z p2
z p
  .1s
1
.05
.1
1
.2
.5
Length (meters)
1
10
fragile
too
fragile
z p
z  p complex
No tradeoff
0
10 -1
10
k
0
10
1
10
expensive
VOR
8
eye
Fragility
vision
slow
Act
4
p
delay
fast
Balancing
an inverted
pendulum
l0  l  1
Control
 ln
l0  l
z p2
z p
  .1s
1
Act
.05
.1
1
.2
.5
Length (meters)
1
10
fragile
Slow
too
fragile
z p
z  p complex
Fast
No tradeoff
0
Flexible
General
Inflexible
Special
10 -1
10
k
0
10
1
10
expensive
VOR
8
eye
vision
slow
Act
p
delay
fast
Balancing
an inverted
pendulum
Fragility
 ln
Control
z p
z p
l0  l  1
4
l0  l
2
  .1s
1
Act
.05
Slow
Fast
Flexible
General
Inflexible
Special
.1
.2
.5
Length (meters)
1
Universal laws and architectures
(Turing)
Slow
Architecture
(constraints that
deconstrain)
Fast
Flexible
Inflexible
General
Special
Computational
complexity
Really
slow
Slow
Fast
Undecidable
Flexible/
General
Decidable
NP
Inflexible/
Specific
P
Sustainable  robust + efficient
accessible
accountable
accurate
adaptable
administrable
affordable
auditable
autonomy
available
compatible
composable
configurable
correctness
customizable
debugable
degradable
determinable
demonstrable
dependable
deployable
discoverable
Issues
distributable
durableFast
effective
manageable
safety
mobile
scalable
modifiable
seamless
modular
self-sustainable
nomadic
serviceable
operable
supportable
Robust orthogonality securable
efficient
evolvable
portable
simple
Flexible
extensible
precision
stable
fail transparent
standards
Efficient predictable
fast
producible
survivable
Stochasticsprovable sustainable
fault-tolerant
fidelity
recoverable
tailorable
Memory
flexible
relevant
testable
inspectable
reliable
timely
installable
repeatable
traceable
Integrity
reproducible ubiquitous
interchangeable resilient
understandable
interoperable
responsive
upgradable
learnable
reusable
usable
maintainable
robust
Weaknesses so far
• Some flaws as presented
• See if we can find the flaws and fix them
• What could be improved?
– Model
– Theory
– Experiment
• Suggestions?
Model?
• 1 dimension with 4 states?
• What about the other 2 dimensions?
• Let’s imagine (but not derive) a 10 state
model and see what would happen
• New issues arise
noise
error
eye
x3
E
T  j  
N
x1
Act
x2
vision
delay
Control
noise
error
eye
x3
easy
x1
E
T  j  
N
hard
Act
x2
easy
vision
delay
Control
noise
error
eye
x3
easy
x1
E
T  j  
N
hard
Act
x2
easy
vision
delay
Control
Model to Theory?
•
•
•
•
Linearization? Mostly ok.
Actuation and sensing, mostly ok.
Noise model? Needs work. Why?
Noise and delay is from measuring distance
using stereopsis . How to model this?
• What about all the detailed physiology of
muscle, joints, bone, nerves, etc?
• Need layered control architectures.
Theory
• Analytic results are not scalable
• Aim not analytic formulas but tractable algos
Main lessons
• Theory: hard limits on closed loop
performance, aggravated by
– Instability (unstable poles)
– Delay
– Unstable zeros
• Neuroscience specific
Instabilities in technology
• Efficiency
• Autocatalysis
Select instabilities in biology
Working backwards
• Society/agriculture/weapons/etc
• Bipedalism
• Maternal care
• Warm blood
• Flight
• Mitochondria
• Translation (ribosomes)
• Glycolysis (see 2011 Science paper)
Related documents