Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name__________________________________________________Period______Date____________ Unit 10 – Review Can the triangles be proved congruent? If so, name the postulate or theorem that would prove the triangles congruent. If not, write NONE. Mark vertical angles or shared sides as necessary. _______ 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 11. 12. _______ 2. _______ 3. _______ 4. _______ 5. _______ 6. _______ 7. _______ 8. _______ 9. _______ 10. 10. _______ 11. _______ 12. _______ 13. 13. 14. 15. 16. _______ 14. _______ 15. _______ 16. Unit 10 Review Page 1 What additional congruence statement is needed to prove the triangles congruent by the indicated postulate or theorem? A #17 – 20. Given: ∆NLY and ∆MPA N _________ 17. LN PM , N M by SAS _________ 18. LN PM , NY MA by SSS M Y L _________ 19. L P , LN PM by AAS P _________ 20. L P , M N by ASA #21 – 23. Given: ∆ABC and ∆DEF C _________ 21. A D , AC DF by ASA _________ 22. B E , CB FE by AAS F A B E D _________ 23. AC DF , CB FE by SAS #24 – 26. Given: ∆QPR and ∆SPR P _________ 24. QR SR , 3 4 by SAS 12 _________ 25. 1 2 , PR PR by AAS _________ 26. 1 2 , 3 4 by ASA Q 34 S R Complete each statement using ∆ABC. ____________ 27. _?_ is the included side of A and B . ____________ 28. The right angle is _?_. A ____________ 29. The hypotenuse is _?_. ____________ 30. The side opposite A is _?_. ____________ 31. AB and _?_ are legs of the right triangle. ____________ 32. The angle opposite AC is _?_. ____________ 33. _?_ is the included angle of sides AC and CB . B C For #27- 38 --------OMIT-------____________ 34. The vertex angle is _?_. ____________ 35. The legs are _?_ and _?_. ____________ --------OMIT-------____________ 36. The base is _?_. Unit 10 Review Page 2 ____________ 37. If you use perpendicular segments as a statement in a proof, in the next statement you should name the _?_ angles formed. ____________ 38. After two triangles are proven congruent, the definition that allows you to state the remaining parts congruent is _?_. Informal Proofs. 39. Given: MS LS , ES BS M a) Mark the triangles with the given information. B 1 b) What other corresponding parts are congruent? S 2 E L c) Why are the triangles congruent? 40. Given: P is the midpoint of RS . R S a) Mark the triangles with the given information. b) What other corresponding parts are congruent? R T P 1 2 S V c) Why are the triangles congruent? d) Explain why T V . 41. Given: TF SM , F is the midpoint of SM . T a) Mark the triangles with the given information. b) What other corresponding parts are congruent? c) Why are the triangles congruent? 1 2 S M F d) Explain why S M . Circle the correct answer choice. R 42. Which of these will not be used as a reason in a proof of RT RS ? A) ASA C) SAS B) CPCTC D) Reflexive Property T U S Unit 10 Review Page 3 Formal Proofs F A 3 43. Given: 1 2 , 3 4 , C is the midpoint of BE . 4 Prove: ∆ABC ∆FEC 1 B Statements C 2 E Reasons A B 44. Given: A E , C is the midpoint of BD . 1 2 Prove: ∆ACB ∆ECD D C E Statements Reasons A 45. Given: 1 2 , 3 4 Prove: ∆ABD ∆CBD Statements B 1 2 3 4 D C Reasons Unit 10 Review Page 4 A 46. Given: BC bisects ABD BC bisects ACD Prove: AC DC B Statements 47. Given: D KS TR S Statements C Reasons A , SAT RAT 48. Given: Prove: ST RT KR TS , Prove: SK RT 3 4 1 2 K R S R A T Reasons Statements T Reasons Unit 10 Review Page 5 Review Answer Key 1. ASA 2. HL 3. AAS 4. AAS 5. SSS 6. SAS 7. SAS 8. AAS 9. SAS 10. ASA 11. NONE 12. NONE 13. SAS 14. SAS 15. ASA 16. SSS 43. 17. NY MA 45. Statements 1. 1 2, 3 4, C is the 1. Given midpoint of BE 2. BC EC 3. ΔABC ΔFEC 2. Def. of midpoint 3. AAS 44. Statements 1. A E, C is the midpoint of 1. Given BD 2. BC DC 3. 1 2 4. ΔACB ΔECD 2. Def. of midpoint 3. Vertical angles 3. AAS 18. LY PA 19. Y A Statements 1. 1 2, 3 4 20. 21. 22. 23. 46. LN PM C F A D C F 2. BD BD 3. ΔABD ΔCBD 1. BC bisects ABD, 26. PR PR BC bisects ACD 2. 1 2, 3 4 30. BC 31. 32. 33. 34. BC B C OMIT AB, BC OMIT right CPCTC (Congruent Parts of Congruent Triangles are Congruent) 39. (b) 1 2 (c) SAS 35. 36. 37. 38. 40. (b) RP SP , 1 2 (c) ASA (d) CPCTC 41. (b) 1 2, SF MF, TF TF (c) SAS (d) CPCTC 42. A Reasons Reasons 1. Given 2. Reflexive property 3. ASA Statements 24. PR PR 25. Q S 27. AB 28. B 29. AC Reasons 3. BC BC 4. ΔABC ΔDBC 5. AC DC Reasons 1. Given 2. 3, 4. 5. Def. of angle bisector Reflexive property ASA CPCTC 47. Statements 1. KR TS, KS TR 2. KRS TSR, KSR TRS 3. SR SR 4. ΔSKR ΔRTS 5. SK RT Reasons 1. Given 2. 3, 4. 5. Alternate interior angles Reflexive property ASA CPCTC 48. 1. Statements A , SAT RAT Reasons 1. Given 2. SA RA 2. Radii are congruent 3. AT AT 4. ΔSAT ΔRAT 5. ST RT 3, Reflexive property 4. SAS 5. CPCTC Unit 10 Review Page 6