Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SEMMELWEIS PÁZMÁNY PÉTER UNIVERSITY CATHOLIC UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PÁZMÁNY PÉTER CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund *** **Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben ***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. 2011.10.06.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 semmelweis-egyetem.hu WORLD OF MOLECULES (Molekulák világa) PROPERTIES OF ATOMS (Az atomok tulajdonságai) KRISTÓF IVÁN 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 2 World of Molecules: Properties of atoms semmelweis-egyetem.hu Previously - Periodic system of elements 1. History of elements 2. Rutherford’s scattering experiment 3. Bohr-Sommerfeld model 4. Elementary particles 5. Fundamental interaction 6. Periodic system/table of elements [an interactive periodic table is available at www.ptable.com] 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 3 World of Molecules: Properties of atoms semmelweis-egyetem.hu Previously - Rutherford’s atom model (He) http://http://en.wikipedia.org/wiki/File:Helium_atom_QM.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 4 World of Molecules: Properties of atoms semmelweis-egyetem.hu Previously - Elementary particles Elementary particles • • Fermions • Quarks • Leptons Bosons • Gauge bosons Fundamental interactions • • • • strong nuclear force weak nuclear force electromagnetic force gravitational force http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 5 World of Molecules: Properties of atoms semmelweis-egyetem.hu Previously – Periodic table of elements http://en.wikipedia.org/wiki/Periodic_table 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 6 World of Molecules: Properties of atoms semmelweis-egyetem.hu Table of Contents 1. 2. 3. 4. 5. 6. 7. 8. 9. Nucleus Isotopes Tables of isotopes Radioactivity Decay modes Bohr-Sommerfeld model Quantum numbers Electron structure Examples 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 7 World of Molecules: Properties of atoms semmelweis-egyetem.hu Nucleus Nucleus is made up of protons and neutrons Atomic number (Z) • number of protons Number of neutrons (N) Mass number (A) • Sum of protons and neutrons A=Z+N 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 8 World of Molecules: Properties of atoms semmelweis-egyetem.hu Isotope Same chemical element • Atomic number (Z) is the same Different number of neutrons (N) Mass number (A) different! A e.g.: Carbon 12 6 C 13 6 C 14 6 C Z 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 9 World of Molecules: Properties of atoms semmelweis-egyetem.hu Table of isotopes – table of nuclides • number of protons (Z) vs. neutrons (N) • all isotopes of the same element are present at constant Z (atomic number) • different representations • half-life • decay mode • Checker board for following radioactive decay chains 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 10 World of Molecules: Properties of atoms Isotopes stability number of neutrons semmelweis-egyetem.hu number of protons http://en.wikipedia.org/wiki/File:Isotopes_and_half-life.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11 World of Molecules: Properties of atoms semmelweis-egyetem.hu Isotopes Types of decay http://commons.wikimedia.org/wiki/File:Table_isotopes_en.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 12 World of Molecules: Properties of atoms semmelweis-egyetem.hu Table of isotopes (half life representation) National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/ 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 13 World of Molecules: Properties of atoms semmelweis-egyetem.hu Table of isotopes (decay mode representation) National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/ 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 14 World of Molecules: Properties of atoms semmelweis-egyetem.hu Isotopes of Carbon 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 15 World of Molecules: Properties of atoms semmelweis-egyetem.hu Isotopes of Carbon Carbon-12 (12C) is used as atomic mass unit: 1 atomic mass unit is 1/12th of 1 mole 12C. Or 1 mole is the amount of atoms in 12grams of 12C. It is the Avogadro number: 6.022×1023 mol-1 Different isotopes of the same chemical element have different nuclear stabilities. 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 16 World of Molecules: Properties of atoms semmelweis-egyetem.hu Radioactivity Main decay modes of unstable nuclei • Alpha decay • The release of 2 protons and 2 neutrons (i.e. a 4He nucleus), A2=A1-4; Z2=Z1-2 • Beta decay • Release of an electron from the nucleus, Z2=Z1+1 • Gamma decay • High energy X-rays 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 17 World of Molecules: Properties of atoms semmelweis-egyetem.hu Main decay modes http://en.wikipedia.org/wiki/File:Alfa_beta_gamma_radiation.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 18 World of Molecules: Properties of atoms semmelweis-egyetem.hu Radioactivity Other decay modes • Proton emission, neutron emission, double proton emission, spontaneous fission • Positron emission (β+), electron capture, double beta decay, double electron capture, double positron emission, electron capture + positron emission 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 19 World of Molecules: Properties of atoms semmelweis-egyetem.hu Decay modes on the table of nuclides http://en.wikipedia.org/wiki/File:Radioactive_decay_modes.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 20 World of Molecules: Properties of atoms semmelweis-egyetem.hu Radioactive decay chains • half life: time required for half of the amount to decay t1/2 • Decay constant λ t1 2 = 2011.10.06. ln(2) λ N (t ) = N 0 ⋅ e TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 − λ ⋅t 21 World of Molecules: Properties of atoms semmelweis-egyetem.hu Radioactive decay chains Decay chains occur when the resulting nucleus is also unstable. Decay chains have different decay modes and rates dependent on the properties of the unstable nuclei. Decay stops at a stable nucleus 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 22 World of Molecules: Properties of atoms semmelweis-egyetem.hu Decay chain of Uranium-238 from 238U (uranium) to 206Pb (lead) http://en.wikipedia.org/wiki/File:Decay_chain%284n%2B2,_Uranium_series%29.PNG 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23 World of Molecules: Properties of atoms semmelweis-egyetem.hu Table of isotopes (decay mode representation) Z N National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/ 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 24 World of Molecules: Properties of atoms semmelweis-egyetem.hu http://en.wikipedia.org/wiki/Table_of_nuclides 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 25 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configuration of atoms http://en.wikipedia.org/wiki/File:Electron_Configuration_Table.jpg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 26 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model http://en.wikipedia.org/wiki/File:Bohr_atom_model_English.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 27 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model http://en.wikipedia.org/wiki/File:Sommerfeld_ellipses.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 28 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model • The electrons can only travel in special orbits • • • • 2011.10.06. at discrete distances from the nucleus with specific energies The electrons do not lose energy as they travel on these orbits – in contrast with classical electrodynamics The angular momentum of electrons are integer multiples of the reduced Plack’s constant (h/2π) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 29 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model • Angular momentum and wavelength h mv n rn = n , where n = 1,2,… 2π 2π rn h h λ= = ⇒ p mvn n • Radius of orbits • 2011.10.06. h 2π rn = n = nλ mv n The circumference of orbits are integer multiples of the electron’s wavelength TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 30 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model • 4 quantum numbers uniquely represent the state of the electron inside an atom • • • • 2011.10.06. n - principal quantum number describes the electron shell (n=1, 2, ..., 6) l - azimuthal q. n. or angular momentum describes the subshell (l =0, 1..., n-1) m - magnetic quantum number describes the subshell’s shape (m= -l, ..., 0, ..., l) s - spin quantum number (s =-1/2 or +1/2) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 31 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model name symbol meaning Value Principal quantum number n Shell (distance from nucleus) n=1,2,3...,6 Azimuthal quantum number l Subshell (shape of orbital) l=0,1, ..., n-1 Magnetic quantum number m energy shift (orientation of the subshell's shape) m=-l, ...,0, ..., l Spin quantum number s Spin of the electron s=− 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 1 or + 2 2 32 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model value name of shell Principal quantum number (n) 2011.10.06. number of electrons in shell 1 K 2 2 L 2+6=8 3 M 2+6+10=18 4 N 2+6+10+14=32 5 O 2+6+10+14+18=50 6 P 2+6+10+14+18+22=72 7 Q 2+6+10+14+18+22+26=98 TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model value Azimuthal quantum number (l) name of subshell number of electrons 0 s (sharp) 2 1 p (principal) 6 2 d (diffuse) 10 3 f (fundamental) 14 4 g 18 5 h 22 6 i 26 Shells g, h, i are not occupied in naturally occuring elements due to their high orbital energy levels. (see Aufbau principle) 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 34 World of Molecules: Properties of atoms semmelweis-egyetem.hu Bohr-Sommerfeld model Filling up the atomic orbitals with electrons • Pauli’s (exclusion) principle: no two electrons can have the same four quantum numbers (n, l, m, s) • Hund’s rules: for a given electron configuration, the maximum multiplicity has the lowest energy • 2011.10.06. pairing of electrons is an unfavorable process TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 35 World of Molecules: Properties of atoms semmelweis-egyetem.hu Atomic orbitals http://en.wikipedia.org/wiki/Atomic_orbital 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 36 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Hydrogen 1s1 n=1 l=0 (s orbital) m=0 s =-1/2 or +1/2 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 37 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Helium 1s2 n=1 (closed shell) l=0 (s orbital) m=0 s =-1/2 and +1/2 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 38 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Carbon 1s2 2s2 2p2 example: n=2 l=1 (p orbital) m=0 s =-1/2 or +1/2 http://en.wikipedia.org/wiki/File:P2M0.png 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 39 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Nitrogen 1s2 2s2 2p3 example: n=2 l=1 (p orbital) m=1 s =-1/2 or +1/2 http://en.wikipedia.org/wiki/File:P2M1.png 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 40 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Oxygen 1s2 2s2 2p4 example: n=2 l=1 (p orbital) m=-1 s =-1/2 or +1/2 http://en.wikipedia.org/wiki/File:P2M-1.png 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 41 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Neon 1s2 2s2 2p6 n=2 (closed shell) all atomic orbitals of shells 1 and 2 are filled http://en.wikipedia.org/wiki/File:Neon-glow.jpg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 42 World of Molecules: Properties of atoms semmelweis-egyetem.hu The electron structure of Radium 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 n=7 l=0 (s orbital) m=0 s =-1/2 and +1/2 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 http://en.wikipedia.org/wiki/File:S7M0.png 43 World of Molecules: Properties of atoms semmelweis-egyetem.hu Periodic table – electron configurations http://en.wikipedia.org/wiki/Periodic_table_%28electron_configurations%29 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 44 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configurations 1. 2. 3. 4. 5. 6. 7. 8. 9. H 1s1 He 1s2 Li (He)2s1 Be (He)2s2 B (He)2s22p1 C (He)2s22p2 N (He)2s22p3 O (He)2s22p4 F (He)(2s)2(2p)5 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 45 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configurations 10. Ne (He)2s22p6 11. Na (Ne)3s1 12. Mg (Ne)3s2 13. Al (Ne)3s23p1 14. Si (Ne)3s23p2 15. P (Ne)3s23p3 16. S (Ne)3s23p4 17. Cl (Ne)3s23p5 18. Ar (Ne)3s23p6 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 46 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configurations 19. 20. 21. 22. 23. 24. 25. 26. 27. K (Ar)4s1 Ca (Ar)4s2 Sc (Ar)4s23d1 Ti (Ar)4s23d2 V (Ar)4s23d3 Cr (Ar)4s13d5 Mn (Ar)4s23d5 Fe (Ar)4s23d6 Co (Ar)4s23d7 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 47 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configurations 28. Ni (Ar)4s23d8 29. Cu (Ar)4s13d10 30. Zn (Ar)4s23d10 31. Ga (Ar)4s23d104p1 32. Ge (Ar)4s23d104p2 33. As (Ar)4s23d104p3 34. Se (Ar)4s23d104p4 35. Br (Ar)4s23d104p5 36. Kr (Ar)4s23d104p6 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 48 World of Molecules: Properties of atoms semmelweis-egyetem.hu Electron configurations 37. Rb (Kr)5s1 38. Sr (Kr)5s2 39. Y (Kr)5s24d1 40. Zr (Kr)5s24d2 41. ... The filling of atomic orbitals is not in numerical order... but by energy levels. 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 49 World of Molecules: Properties of atoms semmelweis-egyetem.hu Aufbau principle The orbitals of lower energy are filled in first with the electrons • Madelung’s rule (Klechowski) • • Orbitals are filled in the order of increasing n+l if equal, then the one with lower n is filled first This results in the order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, and 7p 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 50 World of Molecules: Properties of atoms semmelweis-egyetem.hu Aufbau principle – filling of orbitals http://en.wikipedia.org/wiki/File:Klechkowski_rule_2.svg 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 51 World of Molecules: Properties of atoms semmelweis-egyetem.hu Next - Dual nature of electrons 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Dual nature of light Particle nature of electron Wave nature of electrons (de Broglie) Particle-wave duality of electrons Schrödinger equation The wave functions of the electron in 1D The wave functions of the electron in a harmonic oscillator The wave functions of the electron in 3D The wave functions of the electron in the Hydrogen atom Short introduction to complex numbers 2011.10.06. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 52