Download semmelweis-egyetem.hu

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SEMMELWEIS
PÁZMÁNY PÉTER
UNIVERSITY
CATHOLIC UNIVERSITY
Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**
Consortium leader
PÁZMÁNY PÉTER CATHOLIC UNIVERSITY
Consortium members
SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER
The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***
**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben
***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.
2011.10.06..
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
1
semmelweis-egyetem.hu
WORLD OF MOLECULES
(Molekulák világa)
PROPERTIES OF ATOMS
(Az atomok tulajdonságai)
KRISTÓF IVÁN
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
2
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Previously - Periodic system of elements
1. History of elements
2. Rutherford’s scattering experiment
3. Bohr-Sommerfeld model
4. Elementary particles
5. Fundamental interaction
6. Periodic system/table of elements
[an interactive periodic table is available at www.ptable.com]
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
3
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Previously - Rutherford’s atom model (He)
http://http://en.wikipedia.org/wiki/File:Helium_atom_QM.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
4
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Previously - Elementary particles
Elementary particles
•
•
Fermions
•
Quarks
•
Leptons
Bosons
•
Gauge bosons
Fundamental interactions
•
•
•
•
strong nuclear force
weak nuclear force
electromagnetic force
gravitational force
http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
5
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Previously – Periodic table of elements
http://en.wikipedia.org/wiki/Periodic_table
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
6
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Table of Contents
1.
2.
3.
4.
5.
6.
7.
8.
9.
Nucleus
Isotopes
Tables of isotopes
Radioactivity
Decay modes
Bohr-Sommerfeld model
Quantum numbers
Electron structure
Examples
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
7
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Nucleus
Nucleus is made up of protons and neutrons
Atomic number (Z)
• number of protons
Number of neutrons (N)
Mass number (A)
• Sum of protons and neutrons
A=Z+N
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
8
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Isotope
Same chemical element
• Atomic number (Z) is the same
Different number of neutrons (N)
Mass number (A) different!
A
e.g.: Carbon
12
6
C
13
6
C
14
6
C
Z
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
9
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Table of isotopes – table of nuclides
• number of protons (Z) vs. neutrons (N)
• all isotopes of the same element are present at
constant Z (atomic number)
• different representations
• half-life
• decay mode
• Checker board for following radioactive decay
chains
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
10
World of Molecules: Properties of atoms
Isotopes
stability
number of neutrons
semmelweis-egyetem.hu
number of protons
http://en.wikipedia.org/wiki/File:Isotopes_and_half-life.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
11
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Isotopes
Types of
decay
http://commons.wikimedia.org/wiki/File:Table_isotopes_en.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
12
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Table of isotopes (half life representation)
National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
13
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Table of isotopes (decay mode representation)
National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
14
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Isotopes of Carbon
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
15
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Isotopes of Carbon
Carbon-12 (12C) is used as atomic mass unit:
1 atomic mass unit is 1/12th of 1 mole 12C.
Or
1 mole is the amount of atoms in 12grams of 12C.
It is the Avogadro number: 6.022×1023 mol-1
Different isotopes of the same chemical element
have different nuclear stabilities.
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
16
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Radioactivity
Main decay modes of unstable nuclei
• Alpha decay
• The release of 2 protons and 2 neutrons (i.e. a 4He
nucleus), A2=A1-4; Z2=Z1-2
• Beta decay
• Release of an electron from the nucleus, Z2=Z1+1
• Gamma decay
• High energy X-rays
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
17
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Main decay modes
http://en.wikipedia.org/wiki/File:Alfa_beta_gamma_radiation.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
18
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Radioactivity
Other decay modes
• Proton emission, neutron emission,
double proton emission, spontaneous fission
• Positron emission (β+), electron capture,
double beta decay, double electron capture,
double positron emission, electron capture +
positron emission
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
19
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Decay modes on the table of nuclides
http://en.wikipedia.org/wiki/File:Radioactive_decay_modes.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
20
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Radioactive decay chains
• half life: time required for half of the amount
to decay
t1/2
• Decay constant
λ
t1 2 =
2011.10.06.
ln(2)
λ
N (t ) = N 0 ⋅ e
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
− λ ⋅t
21
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Radioactive decay chains
Decay chains occur when the resulting nucleus is
also unstable.
Decay chains have different decay modes and
rates dependent on the properties of the
unstable nuclei.
Decay stops at a stable nucleus
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
22
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Decay chain of Uranium-238
from 238U (uranium)
to 206Pb (lead)
http://en.wikipedia.org/wiki/File:Decay_chain%284n%2B2,_Uranium_series%29.PNG
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
23
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Table of isotopes (decay mode representation)
Z
N
National Nuclear Data Center, information extracted from the Chart of Nuclides database, http://www.nndc.bnl.gov/chart/
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
24
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
http://en.wikipedia.org/wiki/Table_of_nuclides
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
25
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configuration of atoms
http://en.wikipedia.org/wiki/File:Electron_Configuration_Table.jpg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
26
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
http://en.wikipedia.org/wiki/File:Bohr_atom_model_English.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
27
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
http://en.wikipedia.org/wiki/File:Sommerfeld_ellipses.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
28
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
• The electrons can only travel in special orbits
•
•
•
•
2011.10.06.
at discrete distances from the nucleus
with specific energies
The electrons do not lose energy as they travel on
these orbits – in contrast with classical
electrodynamics
The angular momentum of electrons are integer
multiples of the reduced Plack’s constant (h/2π)
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
29
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
• Angular momentum and wavelength
h
mv n rn = n
, where n = 1,2,…
2π
2π rn
h
h
λ= =
⇒
p mvn
n
• Radius of orbits
•
2011.10.06.
h
2π rn = n
= nλ
mv n
The circumference of orbits are integer multiples
of the electron’s wavelength
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
30
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
• 4 quantum numbers uniquely represent the
state of the electron inside an atom
•
•
•
•
2011.10.06.
n - principal quantum number
describes the electron shell (n=1, 2, ..., 6)
l - azimuthal q. n. or angular momentum
describes the subshell (l =0, 1..., n-1)
m - magnetic quantum number
describes the subshell’s shape (m= -l, ..., 0, ..., l)
s - spin quantum number (s =-1/2 or +1/2)
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
31
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
name
symbol
meaning
Value
Principal quantum
number
n
Shell (distance from nucleus)
n=1,2,3...,6
Azimuthal quantum
number
l
Subshell (shape of orbital)
l=0,1, ..., n-1
Magnetic quantum
number
m
energy shift (orientation of the
subshell's shape)
m=-l, ...,0, ..., l
Spin quantum number
s
Spin of the electron
s=−
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
1
1
or +
2
2
32
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
value name of shell
Principal quantum number (n)
2011.10.06.
number of electrons in shell
1
K
2
2
L
2+6=8
3
M
2+6+10=18
4
N
2+6+10+14=32
5
O
2+6+10+14+18=50
6
P
2+6+10+14+18+22=72
7
Q
2+6+10+14+18+22+26=98
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
33
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
value
Azimuthal quantum number (l)
name of subshell
number of electrons
0
s (sharp)
2
1
p (principal)
6
2
d (diffuse)
10
3
f (fundamental)
14
4
g
18
5
h
22
6
i
26
Shells g, h, i are not occupied in naturally occuring elements due to their high
orbital energy levels. (see Aufbau principle)
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
34
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Bohr-Sommerfeld model
Filling up the atomic orbitals with electrons
• Pauli’s (exclusion) principle:
no two electrons can have the same four
quantum numbers (n, l, m, s)
• Hund’s rules:
for a given electron configuration, the
maximum multiplicity has the lowest energy
•
2011.10.06.
pairing of electrons is an unfavorable process
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
35
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Atomic orbitals
http://en.wikipedia.org/wiki/Atomic_orbital
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
36
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Hydrogen
1s1
n=1
l=0 (s orbital)
m=0
s =-1/2 or +1/2
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
37
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Helium
1s2
n=1 (closed shell)
l=0 (s orbital)
m=0
s =-1/2 and +1/2
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
38
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Carbon
1s2 2s2 2p2
example:
n=2
l=1 (p orbital)
m=0
s =-1/2 or +1/2
http://en.wikipedia.org/wiki/File:P2M0.png
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
39
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Nitrogen
1s2 2s2 2p3
example:
n=2
l=1 (p orbital)
m=1
s =-1/2 or +1/2
http://en.wikipedia.org/wiki/File:P2M1.png
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
40
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Oxygen
1s2 2s2 2p4
example:
n=2
l=1 (p orbital)
m=-1
s =-1/2 or +1/2
http://en.wikipedia.org/wiki/File:P2M-1.png
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
41
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Neon
1s2 2s2 2p6
n=2 (closed shell)
all atomic orbitals of shells
1 and 2 are filled
http://en.wikipedia.org/wiki/File:Neon-glow.jpg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
42
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
The electron structure of Radium
1s2 2s2 2p6 3s2 3p6 4s2 3d10
4p6 5s2 4d10 5p6 6s2 4f14
5d10 6p6 7s2
n=7
l=0 (s orbital)
m=0
s =-1/2 and +1/2
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
http://en.wikipedia.org/wiki/File:S7M0.png
43
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Periodic table – electron configurations
http://en.wikipedia.org/wiki/Periodic_table_%28electron_configurations%29
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
44
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configurations
1.
2.
3.
4.
5.
6.
7.
8.
9.
H 1s1
He 1s2
Li (He)2s1
Be (He)2s2
B (He)2s22p1
C (He)2s22p2
N (He)2s22p3
O (He)2s22p4
F (He)(2s)2(2p)5
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
45
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configurations
10. Ne (He)2s22p6
11. Na (Ne)3s1
12. Mg (Ne)3s2
13. Al (Ne)3s23p1
14. Si (Ne)3s23p2
15. P (Ne)3s23p3
16. S (Ne)3s23p4
17. Cl (Ne)3s23p5
18. Ar (Ne)3s23p6
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
46
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configurations
19.
20.
21.
22.
23.
24.
25.
26.
27.
K (Ar)4s1
Ca (Ar)4s2
Sc (Ar)4s23d1
Ti (Ar)4s23d2
V (Ar)4s23d3
Cr (Ar)4s13d5
Mn (Ar)4s23d5
Fe (Ar)4s23d6
Co (Ar)4s23d7
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
47
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configurations
28. Ni (Ar)4s23d8
29. Cu (Ar)4s13d10
30. Zn (Ar)4s23d10
31. Ga (Ar)4s23d104p1
32. Ge (Ar)4s23d104p2
33. As (Ar)4s23d104p3
34. Se (Ar)4s23d104p4
35. Br (Ar)4s23d104p5
36. Kr (Ar)4s23d104p6
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
48
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Electron configurations
37. Rb (Kr)5s1
38. Sr (Kr)5s2
39. Y (Kr)5s24d1
40. Zr (Kr)5s24d2
41. ...
The filling of atomic orbitals is not in
numerical order... but by energy levels.
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
49
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Aufbau principle
The orbitals of lower energy are filled in first
with the electrons
• Madelung’s rule (Klechowski)
•
•
Orbitals are filled in the order of increasing n+l
if equal, then the one with lower n is filled first
This results in the order:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f,
5d, 6p, 7s, 5f, 6d, and 7p
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
50
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Aufbau principle – filling of orbitals
http://en.wikipedia.org/wiki/File:Klechkowski_rule_2.svg
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
51
World of Molecules: Properties of atoms
semmelweis-egyetem.hu
Next - Dual nature of electrons
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Dual nature of light
Particle nature of electron
Wave nature of electrons (de Broglie)
Particle-wave duality of electrons
Schrödinger equation
The wave functions of the electron in 1D
The wave functions of the electron in a harmonic oscillator
The wave functions of the electron in 3D
The wave functions of the electron in the Hydrogen atom
Short introduction to complex numbers
2011.10.06.
TÁMOP – 4.1.2-08/2/A/KMR-2009-0006
52
Related documents