Download Lesson 2-5: Reasoning in Algebra and Geometry Goal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LESSON 2-5: REASONING IN
ALGEBRA AND GEOMETRY
Goal: To connect reasoning in Algebra and
Geometry.
PROPERTIES OF EQUALITY:
Let π‘Ž, 𝑏, and 𝑐 be any real numbers.
Addition Property
Subtraction Property
Multiplication Property
Division Property
Reflexive Property
Symmetric Property
Transitive Property
Substitution Property
𝐼𝑓 π‘Ž = 𝑏, π‘‘β„Žπ‘’π‘› π‘Ž + 𝑐 = 𝑏 + 𝑐.
𝐼𝑓 π‘Ž = 𝑏, π‘‘β„Žπ‘’π‘› π‘Ž βˆ’ 𝑐 = 𝑏 βˆ’ 𝑐.
𝐼𝑓 π‘Ž = 𝑏, π‘‘β„Žπ‘’π‘› π‘Ž βˆ™ 𝑐 = 𝑏 βˆ™ 𝑐.
𝐼𝑓 π‘Ž = 𝑏 π‘Žπ‘›π‘‘ 𝑐 β‰  0, π‘‘β„Žπ‘’π‘›
𝑏
= 𝑐.
π‘Ž=π‘Ž
𝐼𝑓 π‘Ž = 𝑏, π‘‘β„Žπ‘’π‘› 𝑏 = π‘Ž.
𝐼𝑓 π‘Ž = 𝑏 π‘Žπ‘›π‘‘ 𝑏 = 𝑐, π‘‘β„Žπ‘’π‘› π‘Ž = 𝑐.
𝐼𝑓 π‘Ž = 𝑏, π‘‘β„Žπ‘’π‘› 𝑏 π‘π‘Žπ‘› π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’ π‘Ž
𝑖𝑛 π‘Žπ‘›π‘¦ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›.
Distributive Property
π‘Ž 𝑏 + 𝑐 = π‘Žπ‘ + π‘Žπ‘
π‘Ž
𝑐
π‘Ž 𝑏 βˆ’ 𝑐 = π‘Žπ‘ βˆ’ π‘Žπ‘
EXAMPLE 1: JUSTIFYING STEPS WHEN
SOLVING AN EQUATION
ο‚’
What is the Value of x? Justify each step.
βˆ π΄π‘‚π‘€ π‘Žπ‘›π‘‘ βˆ π‘€π‘‚πΆ are supplementary βˆ β€™s that form a linear pair
are supplementary
Definition of supplementary βˆ β€² 𝑠
π‘šβˆ π΄π‘‚π‘€ + π‘šβˆ π‘€π‘‚πΆ = 180
Substitution property
2π‘₯ + 30 + π‘₯ = 180
Combining like terms
3π‘₯ + 30 = 180
Subtraction Property of Equality
3π‘₯ = 150
Division Property of Equality
π‘₯ = 50
PROPERTIES OF CONGRUENCE:
Reflexive Property
𝐴𝐡 β‰… 𝐴𝐡
Symmetric Property
𝐼𝑓 𝐴𝐡 β‰… 𝐢𝐷, π‘‘β„Žπ‘’π‘› 𝐢𝐷 β‰… 𝐴𝐡
𝐼𝑓 ∠𝐴 β‰… ∠𝐡, π‘‘β„Žπ‘’π‘› ∠𝐡 β‰… ∠𝐴
Transitive Property
𝐼𝑓 𝐴𝐡 β‰… 𝐢𝐷 π‘Žπ‘›π‘‘ 𝐢𝐷 β‰… 𝐸𝐹,
π‘‘β„Žπ‘’π‘› 𝐴𝐡 β‰… 𝐸𝐹
𝐼𝑓 ∠𝐴 β‰… ∠𝐡 π‘Žπ‘›π‘‘ ∠𝐡 β‰… ∠𝐢,
π‘‘β„Žπ‘’π‘› ∠𝐴 β‰… ∠𝐢.
∠𝐴 β‰… ∠𝐴
EXAMPLE 2: USING PROPERTIES OF
EQUALITY AND CONGRUENCE
ο‚’
What is the property of congruence that justifies
going from the first statement to the second
statement?
ο‚—
2π‘₯ + 9 = 19
2π‘₯ = 10
ο‚—
βˆ π‘‚ β‰… βˆ π‘Š π‘Žπ‘›π‘‘ βˆ π‘Š β‰… ∠𝐿
βˆ π‘‚ β‰… ∠𝐿
Transitive Prop. Of Congruence
ο‚—
π‘šβˆ πΈ = π‘šβˆ π‘‡
π‘šβˆ π‘‡ = π‘šβˆ πΈ
Symmetric Prop. Of Equality
Subtraction Prop. Of Equality
EXAMPLE 3:
WRITING A TWO-COLUMN PROOF
ASSIGNMENT:
ο‚’
Pg 117 – 118 #’s 6-12 even, 14-19 all and 25
Related documents