Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
114 AMHS Precalculus - Unit 8 Unit 8: Trigonometry – Part 2 Revisiting Tangent, Cotangent, Secant and Cosecant These are called the Quotient Identities: a) tan(α ) = sin(α ) cos(α ) b) cot(α ) = cos(α ) sin(α ) The following are called the Reciprocal Identities: 1 sin(α ) 1 c) cot(α ) = tan(α ) 1 e) sin(α ) = csc(α ) a) csc(α ) = 1 cos(α ) 1 d) tan(α ) = cot(α ) 1 f) cos(α ) = sec(α ) b) sec(α ) = Ex. 1: Evaluate all six trigonometric functions at the following values of θ : a) θ = − π 6 b) θ = π 2 115 AMHS Precalculus - Unit 8 The Pythagorean Identities: a) sin 2 ( x) + cos 2 ( x) = 1 Using the Quotient and Reciprocal identities we can derive the other two Pythagorean Identities: sin 2 ( x) + cos 2 ( x) = 1 sin 2 ( x) + cos 2 ( x) = 1 Conclusion – The other two Pythagorean Identities are: b) c) Ex. 2: Find the values of all six trigonometric functions from the given information: a) sin(θ ) = 4 , θ is in the first quadrant. 5 b) csc(α ) = −5 , 3π < α < 2π 2 116 AMHS Precalculus - Unit 8 Graphs of the Tangent and Cotangent Functions Ex. 1: Graph f ( x) = tan x Domain: Range: x -intercepts: Period: Even or odd? Ex. 2: Graph f ( x) = cot x Domain: Range: x -intercepts: Period: Even or odd? 117 AMHS Precalculus - Unit 8 Ex.3: Sketch one period of each function a) f ( x) = 2 tan( x) b) π f= ( x) cot( x + ) 4 Ex. 4: Find the period of the following functions: f ( x) = tan(2 x) γ f (γ ) = tan( ) 2 Ex. 5: Find all the values of t in the interval [0, 2π ] satisfying the given equation: a) tan(t ) + 1 = 0 b) cot(t ) + 3 = 0 f ( x) = cot( πx 3 ) 118 AMHS Precalculus - Unit 8 Graphs of the Secant and Cosecant Functions Ex. 1: Graph f ( x) = sec x Domain: Range: x -intercepts: Period: Even or odd? Ex. 2: Graph f ( x) = csc x Domain: Range: x -intercepts: Period: Even or odd? 119 AMHS Precalculus - Unit 8 Ex.3: Graph one period of each function a) = f ( x) 1 π sec( x − ) 2 4 b) = f ( x) 2 csc( x − π 2 ) More on Trigonometric Identities Ex. 1: Use the identities you have learned so far to verify the following: a) sin(θ ) cos 2 (θ ) − sin(θ ) = − sin 3 (θ ) b) (1 − (cos x) 2 )(sec x) 2 = (tan x) 2 120 AMHS Precalculus - Unit 8 c) 1 + 2sin α cos α = (sin α + cos α ) 2 d) cot x + tan x = sec x csc x Sum and Difference formulas for Sine and Cosine sin(α= + β ) sin α cos β + cos α sin β sin(α= − β ) sin α cos β − cos α sin β cos(α = + β ) cos α cos β − sin α sin β cos(α = − β ) cos α cos β + sin α sin β Ex. 2: Use the sum and difference formulas to determine the value of the following trigonometric functions. a) sin( π 6 b) cos( + 3π ) 4 7π ) 12 Ex. 3: Verify the identity: sin(t + π 2 )= cos t 121 AMHS Precalculus - Unit 8 Double Angle Formulas We use the sum and difference formulas to derive the double angle formulas. 1. sin(2 x) = 2sin( x) cos( x) 2. cos(2 = x) cos 2 ( x) − sin 2 ( x) Verification: We can then use the Pythagorean identities to derive two other versions of the double angle formula for cosine. cos(2 x) = 1 − 2sin 2 ( x) 4. = cos(2 x) 2 cos 2 ( x) − 1 3. Verification: Power-Reducing formulas If we solve for sin 2 ( x) and cos 2 ( x) in #3 and #4 above, we get: a) cos 2 ( x) = cos(2 x) + 1 2 b) sin 2 ( x) = 1 − cos(2 x) 2 These formulas should be memorized and are very useful in integral calculus. 122 AMHS Precalculus - Unit 8 Ex. 4: If sin t = −3 3π , π <t < ¸ find cos(2t ),sin(2t ) and tan(2t ) 5 2 Ex. 5: Verify the identities = a) cos x sin x sin 2 x + cos x cos 2 x 2 cot 2 x b) cot x − tan x = Ex. 6: Find all the values of x in the interval [0, 2π ] that satisfy the given equation. a) sin 2 x = sin x b) (cos x) 2 − 3sin x − 3 = 0 123 AMHS Precalculus - Unit 8 Ex. 7: Find ALL values of t that satisfy the given equation. a) c) 2 cos t = − 2 (cos t ) 2 + cos t = 0 e) sin(3t ) = − 3 2 g) 3 tan(2t ) + 3 = 0 b) sin t = 1 2 d) 2sin 2 t − sin t − 1 = 0 f) csc t = −2 h) sin t = cos t