Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TEK: Tekoäly / Artificial Intelligence Matti Nykänen School of Computing, Kuopio Campus, University of Eastern Finland lecturer’s e-mail: [email protected] course homepage: http://www.cs.uku.fi/~mnykanen/TEK/ Academic year 2009–10, 2nd quarter Contents 1 Introduction 1.1 What is AI? . . . . . . . . . 1.1.1 The Turing Test . . . 1.1.2 Cognitive Modelling 1.1.3 Laws of Thought . . 1.1.4 Rational Agents . . . 1.2 A Short History of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 3 5 7 9 2 Agents 2.1 Rationality . . . . . . . . . . . 2.2 Environments . . . . . . . . . . 2.3 Simple Reflex Agent . . . . . . 2.4 Model-Based Reflex Agent . . . 2.5 Model-Based, Goal-Based Agent 2.6 Utility-Based Agent . . . . . . . 2.7 Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 14 16 18 19 19 21 23 3 Search 3.1 Uninformed Search . . . . . . . . . . . . . . . . 3.1.1 Breadth-First Search . . . . . . . . . . . 3.1.2 Depth-First Search . . . . . . . . . . . . 3.1.3 Uniform-Cost Search . . . . . . . . . . . 3.1.4 Iterative Deepening Search . . . . . . . . 3.1.5 Graph Search . . . . . . . . . . . . . . . 3.1.6 Searching with Partial Information . . . 3.2 Informed Search . . . . . . . . . . . . . . . . . . 3.2.1 The A∗ algorithm . . . . . . . . . . . . . 3.2.2 Admissibility . . . . . . . . . . . . . . . 3.2.3 Consistency . . . . . . . . . . . . . . . . 3.2.4 On Memory-Bounded Heuristic Search . 3.2.5 On Inventing and Analyzing Heuristics . 3.3 On Online Search . . . . . . . . . . . . . . . . . 3.3.1 An Uninformed Online Search Algorithm 3.3.2 An Informed Online Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 29 33 33 34 36 38 42 45 46 50 50 52 58 61 65 67 . . . . . . i 3.4 Games . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Minimax . . . . . . . . . . . . . . . . . . . 3.4.2 On Multiplayer and Non-Zero Sum Games 3.4.3 Alpha-Beta Pruning . . . . . . . . . . . . 3.4.4 Cutting off Search . . . . . . . . . . . . . 3.4.5 Including an Element of Chance . . . . . . 3.4.6 Including Imperfect Information . . . . . . 4 Logic 4.1 The Wumpus World . . . . . . . . . . 4.2 Principles behind Logic(s) . . . . . . . 4.3 Propositional Logic . . . . . . . . . . . 4.3.1 Propositional Inference . . . . . 4.3.2 Propositional Resolution . . . . 4.3.3 Chaining . . . . . . . . . . . . . 4.3.4 A Propositional Wumpus Agent 4.4 Predicate Logic . . . . . . . . . . . . . 4.4.1 Syntax and Semantics . . . . . 4.4.2 Kinds of Domain Elements . . . 4.4.3 Actions in the Wumpus World . 4.4.4 Resolution in FOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 73 77 79 83 87 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 97 101 106 108 112 117 122 122 124 130 134 140 References Roland Backhouse. Program Construction: Calculating Implementations from Specifications. Wiley, 2003. Anton Benz and Robert van Rooij. Optimal assertions, and what they implicate. A uniform game-theoretic approach. Topoi, 26:63–78, 2007. Heinz-Dieter Ebbinghaus and Jörg. Flum. Finite Model Theory. Springer-Verlag, 1995. Stuart Russell and Peter Norvig. Artificial Intelligence: a Modern Approach. PrenticeHall, 2nd edition, 2003. Stuart Russell and Peter Norvig. Artificial Intelligence: a Modern Approach. PrenticeHall, 1995. Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006. Thomas A. Sudkamp. Languages and Machines. Addison-Wesley, second edition, 1997. ii